Crystal structure of fac-Ir(ppy)(3) and emission properties under ambient conditions and at high pressure

  • Solution and refinement of the crystal structure of fac-Ir(ppy)(3) is severely hampered by systematic twinning and pseudo-symmetry.fac-Ir(ppy)(3) Crystallizes in the centrosymmetric space group P (3) over bar as has been deduced from single-crystal structure refinement and investigations of the second harmonic generation (SHG) of fac-Ir(ppy)(3) powder as compared to two standard materials. The topology of the molecular packing of fac-Ir(ppy)(3) is identical to the packing observed for [Ru(bpy)(3)](0), however, the site symmetry of all Ir(ppy)(3) molecules is necessarily lowered from D-3 to C-3. Packing motifs with intermolecular "pi-pi interactions" of T-shaped and "shifted pi stack" geometry are realized. The systematic twinning leads to the occurrence of crystalline domains with rigorously alternating chirality within the bulk of the domains but with homochiral fac-Ir(ppy)(3) contacts at the domain interfaces. These differences in packing motifs are displayed in the emission spectra and in the high-pressure-induced shifts of theSolution and refinement of the crystal structure of fac-Ir(ppy)(3) is severely hampered by systematic twinning and pseudo-symmetry.fac-Ir(ppy)(3) Crystallizes in the centrosymmetric space group P (3) over bar as has been deduced from single-crystal structure refinement and investigations of the second harmonic generation (SHG) of fac-Ir(ppy)(3) powder as compared to two standard materials. The topology of the molecular packing of fac-Ir(ppy)(3) is identical to the packing observed for [Ru(bpy)(3)](0), however, the site symmetry of all Ir(ppy)(3) molecules is necessarily lowered from D-3 to C-3. Packing motifs with intermolecular "pi-pi interactions" of T-shaped and "shifted pi stack" geometry are realized. The systematic twinning leads to the occurrence of crystalline domains with rigorously alternating chirality within the bulk of the domains but with homochiral fac-Ir(ppy)(3) contacts at the domain interfaces. These differences in packing motifs are displayed in the emission spectra and in the high-pressure-induced shifts of the emission. The emission maximum of the bulk material at 18 350 cm(-1) (545 nm) and of the domain interfaces at 19 700 cm-1 (507 nm) experience for p < 25 kbar and T = 295 K red shifts of Delta nu/Delta p = -(12 +/- 2) cm(-1)/kbar, and -(22 +/- 4) cm(- 1)/kbar, respectivelyshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:J. Breu, P. Stossel, Sigurd Schrader, A. Starukhin, W. J. Finkenzeller, H. Yersin
ISSN:0897-4756
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Chemistry of Materials. - ISSN 0897-4756. - 17 (2005), 7, S. 1745 - 1752
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.