Hydrodynamic model atmospheres for WR stars : self-consistent modeling of a WC star wind

  • We present the first non-LTE atmosphere models for WRstars that incorporate a self-consistent solution of the hydrodynamic equations. The models take iron-group line-blanketing and clumping into account, and compute the hydrodynamic structure of a radiatively driven wind consistently with the non-LTE radiation transport in the co-moving frame. We construct a self-consistent wind model that reproduces all observed properties of an early-type WCstar (WC5). We find that the WR-type mass-loss is initiated at high optical depth by the so-called "Hot Iron Bump" opacities (Fe IX- XVI). The acceleration of the outer wind regions is due to iron-group ions of lower excitation in combination with C and O. Consequently, the wind structure shows two acceleration regions, one close to the hydrostatic wind base in the optically thick part of the atmosphere, and another farther out in the wind. In addition to the radiative acceleration, the "Iron Bump" opacities are responsible for an intense heating of deep atmospheric layers. We find that theWe present the first non-LTE atmosphere models for WRstars that incorporate a self-consistent solution of the hydrodynamic equations. The models take iron-group line-blanketing and clumping into account, and compute the hydrodynamic structure of a radiatively driven wind consistently with the non-LTE radiation transport in the co-moving frame. We construct a self-consistent wind model that reproduces all observed properties of an early-type WCstar (WC5). We find that the WR-type mass-loss is initiated at high optical depth by the so-called "Hot Iron Bump" opacities (Fe IX- XVI). The acceleration of the outer wind regions is due to iron-group ions of lower excitation in combination with C and O. Consequently, the wind structure shows two acceleration regions, one close to the hydrostatic wind base in the optically thick part of the atmosphere, and another farther out in the wind. In addition to the radiative acceleration, the "Iron Bump" opacities are responsible for an intense heating of deep atmospheric layers. We find that the observed narrow O VI emission lines in the optical spectra of WC stars originate from this region. From their dependence on the clumping factor we gain important information about the location where the density inhomogeneities in WR-winds start to developshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Götz Gräfener, Wolf-Rainer HamannORCiDGND
ISSN:0004-6361
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Astronomy and Astrophysics. - ISSN 0004-6361. - 432 (2005), 2, S. 633 - 645
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.