Rupture propagation of the TsE (Mw7.7) on 17 July 2006 off-coast Java

  • The Mw=7.7 tsunamogenic earthquake (TsE) on 17 July 2006, 08:19:28 shock the Indian Ocean at about 15 km depth off-coast Java, Indonesia. It caused a local tsunami with wave heights exceeding 2 m. The death toll reached several hundred. Thousands of people were displaced. By means of standard array methods, we have investigated the propagation and the extent of the rupture front of the causative earthquake. Waveform similarity is expressed by means of the semblance. We back-propagate the semblance for first-arrival phases recorded at broad-band stations within teleseismic distances (30°-95°). Image enhancement is realised by stacking the semblance of 8 arrays within different epicentral and azimuthal directions. From teleseismic observations we find rupturing of a 200 x 100 km wide area in at least 2 phases with propagation from NW to SE and source duration >125 s. The event has some characteristics of a circular rupture followed by unilateral faulting with change in slip rate. Unusually slow rupturing (≈1.5 km/s) is indicated. FaultThe Mw=7.7 tsunamogenic earthquake (TsE) on 17 July 2006, 08:19:28 shock the Indian Ocean at about 15 km depth off-coast Java, Indonesia. It caused a local tsunami with wave heights exceeding 2 m. The death toll reached several hundred. Thousands of people were displaced. By means of standard array methods, we have investigated the propagation and the extent of the rupture front of the causative earthquake. Waveform similarity is expressed by means of the semblance. We back-propagate the semblance for first-arrival phases recorded at broad-band stations within teleseismic distances (30°-95°). Image enhancement is realised by stacking the semblance of 8 arrays within different epicentral and azimuthal directions. From teleseismic observations we find rupturing of a 200 x 100 km wide area in at least 2 phases with propagation from NW to SE and source duration >125 s. The event has some characteristics of a circular rupture followed by unilateral faulting with change in slip rate. Unusually slow rupturing (≈1.5 km/s) is indicated. Fault area and aftershock distribution coincide. Spatial and temporal resolution are frequency dependent. Studies of a Mw6.0 earthquake on 2006/09/21 and one synthetic source show a ≈1° limit in resolution. Retrieved source area, source duration as well as peak values for semblance and beam power increase with the size of the earthquake making possible an automatic detection and classification of large and small earthquakes.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Dirk Rößler, Frank KrügerGND, Matthias OhrnbergerORCiDGND
URN:urn:nbn:de:kobv:517-opus-12964
Publication type:Article
Language:English
Publication year:2007
Publishing institution:Universität Potsdam
Release date:2007/04/04
Tag:Erdbeben; Indischer Ozean; Seismologie; Tsunami
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.