• search hit 3 of 1292
Back to Result List

Neuromuscular control during stair descent and artificial tibial translation after acute ACL rupture

  • Background: Anterior cruciate ligament (ACL) rupture has direct effect on passive and active knee stability and, specifically, stretch-reflex excitability. Purpose/Hypothesis: The purpose of this study was to investigate neuromuscular activity in patients with an acute ACL deficit (ACL-D group) compared with a matched control group with an intact ACL (ACL-I group) during stair descent and artificially induced anterior tibial translation. It was hypothesized that neuromuscular control would be impaired in the ACL-D group. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Surface electromyographic (EMG) activity of the vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), and semitendinosus (ST) muscles was recorded bilaterally in 15 patients with ACL-D (mean, 13.8 days [range, 7-21 days] since injury) and 15 controls with ACL-I during stair descent and artificially induced anterior tibial translation. The movements of stair descent were divided into preactivity, weight acceptance, and push-off phases.Background: Anterior cruciate ligament (ACL) rupture has direct effect on passive and active knee stability and, specifically, stretch-reflex excitability. Purpose/Hypothesis: The purpose of this study was to investigate neuromuscular activity in patients with an acute ACL deficit (ACL-D group) compared with a matched control group with an intact ACL (ACL-I group) during stair descent and artificially induced anterior tibial translation. It was hypothesized that neuromuscular control would be impaired in the ACL-D group. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Surface electromyographic (EMG) activity of the vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), and semitendinosus (ST) muscles was recorded bilaterally in 15 patients with ACL-D (mean, 13.8 days [range, 7-21 days] since injury) and 15 controls with ACL-I during stair descent and artificially induced anterior tibial translation. The movements of stair descent were divided into preactivity, weight acceptance, and push-off phases. Reflex activity during anterior tibial translation was split into preactivity and short, medium, and late latency responses. Walking on a treadmill was used for submaximal EMG normalization. Kruskal-Wallis test and post hoc analyses with Dunn-Bonferroni correction were used to compare normalized root mean square values for each muscle, limb, movement, and reflex phase between the ACL-D and ACL-I groups. Results: During the preactivity phase of stair descent, the hamstrings of the involved leg of the ACL-D group showed 33% to 51% less activity compared with the matched leg and contralateral leg of the ACL-I group (P <.05). During the weight acceptance and push-off phases, the VL revealed a significant reduction (approximately 40%) in the involved leg of the ACL-D group compared with the ACL-I group. At short latency, the BF and ST of the involved leg of the ACL-D group showed a significant increase in EMG activity compared with the uninvolved leg of the ACL-I group, by a factor of 2.2 to 4.6. Conclusion: In the acute phase after an ACL rupture, neuromuscular alterations were found mainly in the hamstrings of both limbs during stair descent and reflex activity. The potential role of prehabilitation needs to be further studied.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Angela Blasimann, Aglaja BuschORCiD, Philipp Henle, Sven Bruhn, Dirk Vissers, Heiner Baur
DOI:https://doi.org/10.1177/23259671221123299
ISSN:2325-9671
Title of parent work (English):Orthopaedic journal of sports medicine
Publisher:Sage
Publication type:Article
Language:English
Date of first publication:2022/10/13
Publication year:2022
Release date:2024/07/24
Tag:acute; anterior cruciate ligament; neuromuscular control; rupture; stairs; tibial translation
Volume:10
Issue:10
Number of pages:13
Organizational units:Humanwissenschaftliche Fakultät / Strukturbereich Kognitionswissenschaften / Department Sport- und Gesundheitswissenschaften
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.