• search hit 4 of 2037
Back to Result List

Validity of a new sport-specific endurance test in artistic gymnastics

  • Introduction General and particularly sport-specific testing is an integral aspect of performance optimization in artistic gymnastics. In artistic gymnastics, however, only non-specific field tests have been used to assess endurance performance (e.g., Multistage Shuttle Run Test; Cooper's Test). Methods This study aimed to examine the validity of a new sport-specific endurance test in artistic gymnastics. Fourteen elite-level gymnasts (i.e., eight males and six females) participated in this study. The newly developed artistic gymnastics-specific endurance test (AGSET) was conducted on two different occasions seven days apart to determine its reliability. To assess the concurrent validity of AGSET, participants performed the multistage shuttle run test (MSRT). Maximum oxygen uptake (VO2max) and respiratory exchange ratio (RER) were directly assessed using a portable gas analyzer system during both protocols. Additionally, the total time maintained (TTM) during the AGSET, maximum heart rate (HRmax), maximal aerobic speed (MAS), andIntroduction General and particularly sport-specific testing is an integral aspect of performance optimization in artistic gymnastics. In artistic gymnastics, however, only non-specific field tests have been used to assess endurance performance (e.g., Multistage Shuttle Run Test; Cooper's Test). Methods This study aimed to examine the validity of a new sport-specific endurance test in artistic gymnastics. Fourteen elite-level gymnasts (i.e., eight males and six females) participated in this study. The newly developed artistic gymnastics-specific endurance test (AGSET) was conducted on two different occasions seven days apart to determine its reliability. To assess the concurrent validity of AGSET, participants performed the multistage shuttle run test (MSRT). Maximum oxygen uptake (VO2max) and respiratory exchange ratio (RER) were directly assessed using a portable gas analyzer system during both protocols. Additionally, the total time maintained (TTM) during the AGSET, maximum heart rate (HRmax), maximal aerobic speed (MAS), and blood lactate concentration (BLa) during the two protocols were collected. Results The main findings indicated that all variables derived from the AGSET (i.e., VO2max, MAS, HRmax, BLa, and RER) displayed very good relative (all intraclass correlation coefficients [ICC] > 0.90) and absolute (all typical errors of measurement [TEM] < 5%) reliability. Further, results showed that the ability of the AGSET to detect small changes in VO2max, MAS, BLa, and RER was good (smallest worthwhile change [SWC0.2] > TEM), except HRmax (SWC0.2 < TEM). Additionally, results showed a nearly perfect association between the VO2max values derived from the AGSET and MSRT (r = 0.985; coefficient of determination [R-2] = 97%) with no statistically significant differences (p>0.05). The mean (bias) +/- 95% limits of agreement between the two protocols were 0.28 +/- 0.55 mlminkg-1. Discussion AGSET seems to present very good reliability and concurrent validity for assessing endurance performance in elite artistic gymnastics. In addition, the newly developed protocol presents a good ability to detect small changes in performance.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Bessem MkaouerORCiD, Samiha AmaraORCiD, Raja Bouguezzi, Abderraouf Ben Abderrahmen, Helmi ChaabeneORCiDGND
DOI:https://doi.org/10.3389/fspor.2023.1159807
ISSN:2624-9367
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/37168521
Title of parent work (English):Frontiers in sports and active living
Publisher:Frontiers Media
Place of publishing:Lausanne
Publication type:Article
Language:English
Date of first publication:2023/04/17
Publication year:2023
Release date:2024/06/24
Tag:aerobic endurance; artistic gymnastics; assessment; elite athletes; field test; physical fitness; reliability; validity
Volume:5
Article number:1159807
Number of pages:8
Funding institution:Deutsche Forschungsgemeinschaft (DFG); University of Potsdam, Germany
Organizational units:Humanwissenschaftliche Fakultät / Strukturbereich Kognitionswissenschaften / Department Sport- und Gesundheitswissenschaften
DDC classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Peer review:Referiert
Grantor:Publikationsfonds der Universität Potsdam
Publishing method:Open Access / Gold Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.