The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 20258
Back to Result List

Late Lutetian (Eocene) mafic intrusion into shallow marine platform deposits north of the Oman Mountains (Rusayl Embayment) and its tectonic significance

  • A silica undersaturated alkali-olivine basanitic magma intruded the late Paleocene/early Eocene Jafnayn Formation near Muscat. Geochemical analyses indicate that a significant amount of host rock (limestone) was assimilated into the magma. We dated the basanite as 42.7 +/- 1.0 Ma (2 sigma error; late Lutetian), using the whole rock Ar-40/Ar-39 step-wise heating technique. Intrusion occurred in the hanging wall of a major regional extensional shear zone (Frontal Range Fault, FRF) bounding the northern margin of two domes within the Oman Mountains (Jabal Akhdar and Saih Hatat domes). Two shear intervals along the FRF have been documented. The first interval lasted immediately after emplacement of the Semail Ophiolite (latest Cretaceous-early Eocene) while the second and poorly constrained interval was assumed to have occurred during the Oligocene. The proximity of the basanite to the FRF suggests that magma used extensional faults for the upper part of its ascent path. Reactivated Permian rift faults of the Pangaea rift or otherA silica undersaturated alkali-olivine basanitic magma intruded the late Paleocene/early Eocene Jafnayn Formation near Muscat. Geochemical analyses indicate that a significant amount of host rock (limestone) was assimilated into the magma. We dated the basanite as 42.7 +/- 1.0 Ma (2 sigma error; late Lutetian), using the whole rock Ar-40/Ar-39 step-wise heating technique. Intrusion occurred in the hanging wall of a major regional extensional shear zone (Frontal Range Fault, FRF) bounding the northern margin of two domes within the Oman Mountains (Jabal Akhdar and Saih Hatat domes). Two shear intervals along the FRF have been documented. The first interval lasted immediately after emplacement of the Semail Ophiolite (latest Cretaceous-early Eocene) while the second and poorly constrained interval was assumed to have occurred during the Oligocene. The proximity of the basanite to the FRF suggests that magma used extensional faults for the upper part of its ascent path. Reactivated Permian rift faults of the Pangaea rift or other preexisting faults may have been used for the lower ascent part. We conclude that the basanite intrusion coincided with the onset of the second deformation interval along the FRF, because (1) the position of the basanite is near a dextral releasing bend, associated with the second shear interval, (2) the overlap of our Ar-40/Ar-39 age with the cooling curves for rocks from the nearby Jabal Akhdar Dome, and (3) the basanite postdates the first FRF deformation episode by > 10 Ma. Thus, the second interval along the FRF had started already during the late Lutetian and probably lasted into the Miocene.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Andreas Scharf, Masafumi SudoORCiDGND, Bernhard Pracejus, Frank Mattern, Ivan CallegariORCiD, Wilfried Bauer, Katharina Scharf
DOI:https://doi.org/10.1016/j.jafrearsci.2020.103941
ISSN:1464-343X
ISSN:1879-1956
Title of parent work (English):Journal of African earth sciences
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Date of first publication:2020/07/01
Publication year:2020
Release date:2023/05/25
Tag:Ar-40/Ar-39 age; Basanite; Jafnayn formation; Limestone assimilation in basanite; extension; gravitational collapse
Volume:170
Article number:103941
Number of pages:15
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.