The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 28 of 30
Back to Result List

Modeling the Greenland Ice Sheet response to climate change in the past and future

Modellierung der Reaktion des Grönländischen Inlandeises auf den vergangenen und zukünftigen Klimawandel

  • The Greenland Ice Sheet (GIS) contains enough water volume to raise global sea level by over 7 meters. It is a relic of past glacial climates that could be strongly affected by a warming world. Several studies have been performed to investigate the sensitivity of the ice sheet to changes in climate, but large uncertainties in its long-term response still exist. In this thesis, a new approach has been developed and applied to modeling the GIS response to climate change. The advantages compared to previous approaches are (i) that it can be applied over a wide range of climatic scenarios (both in the deep past and the future), (ii) that it includes the relevant feedback processes between the climate and the ice sheet and (iii) that it is highly computationally efficient, allowing simulations over very long timescales. The new regional energy-moisture balance model (REMBO) has been developed to model the climate and surface mass balance over Greenland and it represents an improvement compared to conventional approaches in modelingThe Greenland Ice Sheet (GIS) contains enough water volume to raise global sea level by over 7 meters. It is a relic of past glacial climates that could be strongly affected by a warming world. Several studies have been performed to investigate the sensitivity of the ice sheet to changes in climate, but large uncertainties in its long-term response still exist. In this thesis, a new approach has been developed and applied to modeling the GIS response to climate change. The advantages compared to previous approaches are (i) that it can be applied over a wide range of climatic scenarios (both in the deep past and the future), (ii) that it includes the relevant feedback processes between the climate and the ice sheet and (iii) that it is highly computationally efficient, allowing simulations over very long timescales. The new regional energy-moisture balance model (REMBO) has been developed to model the climate and surface mass balance over Greenland and it represents an improvement compared to conventional approaches in modeling present-day conditions. Furthermore, the evolution of the GIS has been simulated over the last glacial cycle using an ensemble of model versions. The model performance has been validated against field observations of the present-day climate and surface mass balance, as well as paleo information from ice cores. The GIS contribution to sea level rise during the last interglacial is estimated to be between 0.5-4.1 m, consistent with previous estimates. The ensemble of model versions has been constrained to those that are consistent with the data, and a range of valid parameter values has been defined, allowing quantification of the uncertainty and sensitivity of the modeling approach. Using the constrained model ensemble, the sensitivity of the GIS to long-term climate change was investigated. It was found that the GIS exhibits hysteresis behavior (i.e., it is multi-stable under certain conditions), and that a temperature threshold exists above which the ice sheet transitions to an essentially ice-free state. The threshold in the global temperature is estimated to be in the range of 1.3-2.3°C above preindustrial conditions, significantly lower than previously believed. The timescale of total melt scales non-linearly with the overshoot above the temperature threshold, such that a 2°C anomaly causes the ice sheet to melt in ca. 50,000 years, but an anomaly of 6°C will melt the ice sheet in less than 4,000 years. The meltback of the ice sheet was found to become irreversible after a fraction of the ice sheet is already lost – but this level of irreversibility also depends on the temperature anomaly.show moreshow less
  • Das grönländische Inlandeis (GIS) besteht aus einem Wasservolumen das ausreicht, um den globalen Meeresspiegel um 7 Meter ansteigen zu lassen. Es ist ein Relikt der vergangenen Eiszeit, das in einer zunehmend wärmer werdenden Welt stark in Mitleidenschaft gezogen werden könnte. In der vorliegenden Dissertation ist ein neues Verfahren zur Modellierung des Antwortverhaltens des Inlandeises auf Klimaänderungen entwickelt und angewendet worden. Die Vorteile des neuen Verfahrens im Vergleich zu den bisherigen Verfahren sind, (i) dass es über einen groen Bereich von Klimaszenarien (sowohl für die ferne Vergangenheit als auch für die Zukunft) anwendbar ist, (ii) dass es die wesentlichen Rückkopplungsprozesse zwischen Klima und Inlandeis enthält und (iii) dass es wegen seiner guten Rechenzeiteffizienz Simulationen über sehr lange Zeitskalen erlaubt. Das neue Modell (REMBO) ist für die Modellierung des Klimas und der Massenbilanz an der grönländischen Oberfläche entwickelt worden und stellt ein verbessertes Verfahren im Vergleich zu denDas grönländische Inlandeis (GIS) besteht aus einem Wasservolumen das ausreicht, um den globalen Meeresspiegel um 7 Meter ansteigen zu lassen. Es ist ein Relikt der vergangenen Eiszeit, das in einer zunehmend wärmer werdenden Welt stark in Mitleidenschaft gezogen werden könnte. In der vorliegenden Dissertation ist ein neues Verfahren zur Modellierung des Antwortverhaltens des Inlandeises auf Klimaänderungen entwickelt und angewendet worden. Die Vorteile des neuen Verfahrens im Vergleich zu den bisherigen Verfahren sind, (i) dass es über einen groen Bereich von Klimaszenarien (sowohl für die ferne Vergangenheit als auch für die Zukunft) anwendbar ist, (ii) dass es die wesentlichen Rückkopplungsprozesse zwischen Klima und Inlandeis enthält und (iii) dass es wegen seiner guten Rechenzeiteffizienz Simulationen über sehr lange Zeitskalen erlaubt. Das neue Modell (REMBO) ist für die Modellierung des Klimas und der Massenbilanz an der grönländischen Oberfläche entwickelt worden und stellt ein verbessertes Verfahren im Vergleich zu den bisherigen dar. Die Entwicklung von GIS über den letzten glazialen Zyklus ist mittels eines Ensembles von verschiedenen Modellversionen simuliert worden. Anschließend ist die Tauglichkeit der Modellversionen durch Vergleich mit Beobachtungsdaten des gegenwärtigen Klimas und der Oberflächenmassenbilanz, sowie mit paleoklimatischen Rekonstruktionen von Eisbohrkernen verifiziert worden. Der Anteil von GIS am Meeresspiegelanstieg während des letzten Interglazials ist im Bereich von 0.5 bis 4.1 m berechnet worden, was konsistent mit bisherigen Schätzungen ist. Von den Ensemblesimulationen sind diejenigen ausgewählt worden, deren Ergebnisse gut mit den Daten übereinstimmen. Durch die Auswahl von geeigneten Modellversionen sind gleichzeitig die Unsicherheiten der Parameterwerte begrenzt worden, so dass sich nun mit dem neuen Verfahren die Sensitivität von GIS auf Klimaänderungen bestimmen lässt. Mit den ausgewählten Modellversionen ist die Sensitivität von GIS auf langfristige Klimaänderungen untersucht worden. Es zeigt sich, dass das GIS ein Hystereseverhalten besitzt (d.h., eine Multistabilität für gewisse Klimazustände) und dass ein Temperaturschwellwert existiert. Bei Überschreiten des Schwellwertes bleibt das GIS nicht erhalten und wird langsam eisfrei werden. Der Temperaturschwellwert der globalen Mitteltemperatur relativ zur vorindustriellen Mitteltemperatur ist im Bereich 1.3-2.3°C ermittelt worden und liegt damit deutlich niedriger als bisher angenommen. Die Zeitdauer bis zum völligen Abschmelzen zeigt ein nichtlineares Verhalten hinsichtlich einer Erwärmung über den ermittelten Schwellwert. Eine Erwärmung von 2°C relativ zur vorindustriellen Zeit führt zu einem Abschmelzen nach 50.000 Jahren, aber eine Erwärmung um 6°C lässt das Inlandeis bereits nach 4.000 Jahren abschmelzen. Ein weiteres Ergebnis ist, dass der Abschmelzvorgang irreversibel werden kann, nachdem ein gewisser Anteil des Inlandeises abgeschmolzen ist – jedoch ist die Irreversibilität eines Abschmelzvorganges auch von der Temperaturanomalie abhängig.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Alexander RobinsonORCiD
URN:urn:nbn:de:kobv:517-opus-50430
Supervisor(s):Stefan Rahmstorf
Publication type:Doctoral Thesis
Language:English
Publication year:2011
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2011/02/01
Release date:2011/02/03
Tag:Grönland; Hysterese; Inlandeis; Klimawandel; Stabilität
Greenland; climate change; hysteresis; ice sheet; stability
RVK - Regensburg classification:TI 4100
RVK - Regensburg classification:TI 6600
RVK - Regensburg classification:TP 9550
RVK - Regensburg classification:TP 09550
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Extern / Extern
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.