The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 3546
Back to Result List

Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths

  • Remnants of hydrous melt formed at mantle depths have been identified and characterized within high-pressure leucogranulites of the Orlica-Snieznik Dome (Bohemian Massif, central Europe). They occur as nanogranites in garnet formed via partial melting of granitoids during the Variscan orogeny. Melt composition and H2O content have been investigated in situ after experimental re-homogenization of the nanogranites, and are consistent with melts produced experimentally from crustal lithologies at mantle depths. This is the first geochemical study of melt inclusions from natural crustal rocks equilibrated close to the stability field of coesite, shedding light on how continental crust melts during deep subduction. Whereas decompressional melting is commonly invoked for deeply subducted crustal lithologies, melting occurred near or at the metamorphic peak pressure in the Orlica-Snieznik granulites. Melting of deeply subducted crustal rocks significantly modifies the rheology and thus promotes fast exhumation: this process has a criticalRemnants of hydrous melt formed at mantle depths have been identified and characterized within high-pressure leucogranulites of the Orlica-Snieznik Dome (Bohemian Massif, central Europe). They occur as nanogranites in garnet formed via partial melting of granitoids during the Variscan orogeny. Melt composition and H2O content have been investigated in situ after experimental re-homogenization of the nanogranites, and are consistent with melts produced experimentally from crustal lithologies at mantle depths. This is the first geochemical study of melt inclusions from natural crustal rocks equilibrated close to the stability field of coesite, shedding light on how continental crust melts during deep subduction. Whereas decompressional melting is commonly invoked for deeply subducted crustal lithologies, melting occurred near or at the metamorphic peak pressure in the Orlica-Snieznik granulites. Melting of deeply subducted crustal rocks significantly modifies the rheology and thus promotes fast exhumation: this process has a critical influence on the geodynamic evolution of subduction-collision orogens as well as crustal differentiation at depth.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Silvio FerreroORCiDGND, Bernd WunderGND, Katarzyna Walczak, Martin Andreas ZiemannGND
DOI:https://doi.org/10.1130/G36534.1
ISSN:0091-7613
ISSN:1943-2682
Title of parent work (English):Geology
Publisher:American Institute of Physics
Place of publishing:Boulder
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:43
Issue:5
Number of pages:4
First page:447
Last Page:450
Funding institution:Alexander von Humboldt Foundation; German Federal Ministry for Education and Research
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.