The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 10 of 2129
Back to Result List

Paracrine and autocrine regulation of gene expression by Wnt-inhibitor Dickkopf in wild-type and mutant hepatocytes

  • Background: Cells are able to communicate and coordinate their function within tissues via secreted factors. Aberrant secretion by cancer cells can modulate this intercellular communication, in particular in highly organised tissues such as the liver. Hepatocytes, the major cell type of the liver, secrete Dickkopf (Dkk), which inhibits Wnt/beta-catenin signalling in an autocrine and paracrine manner. Consequently, Dkk modulates the expression of Wnt/beta-catenin target genes. We present a mathematical model that describes the autocrine and paracrine regulation of hepatic gene expression by Dkk under wild-type conditions as well as in the presence of mutant cells. Results: Our spatial model describes the competition of Dkk and Wnt at receptor level, intra-cellular Wnt/beta-catenin signalling, and the regulation of target gene expression for 21 individual hepatocytes. Autocrine and paracrine regulation is mediated through a feedback mechanism via Dkk and Dkk diffusion along the porto-central axis. Along this axis an APC concentrationBackground: Cells are able to communicate and coordinate their function within tissues via secreted factors. Aberrant secretion by cancer cells can modulate this intercellular communication, in particular in highly organised tissues such as the liver. Hepatocytes, the major cell type of the liver, secrete Dickkopf (Dkk), which inhibits Wnt/beta-catenin signalling in an autocrine and paracrine manner. Consequently, Dkk modulates the expression of Wnt/beta-catenin target genes. We present a mathematical model that describes the autocrine and paracrine regulation of hepatic gene expression by Dkk under wild-type conditions as well as in the presence of mutant cells. Results: Our spatial model describes the competition of Dkk and Wnt at receptor level, intra-cellular Wnt/beta-catenin signalling, and the regulation of target gene expression for 21 individual hepatocytes. Autocrine and paracrine regulation is mediated through a feedback mechanism via Dkk and Dkk diffusion along the porto-central axis. Along this axis an APC concentration gradient is modelled as experimentally detected in liver. Simulations of mutant cells demonstrate that already a single mutant cell increases overall Dkk concentration. The influence of the mutant cell on gene expression of surrounding wild-type hepatocytes is limited in magnitude and restricted to hepatocytes in close proximity. To explore the underlying molecular mechanisms, we perform a comprehensive analysis of the model parameters such as diffusion coefficient, mutation strength and feedback strength. Conclusions: Our simulations show that Dkk concentration is elevated in the presence of a mutant cell. However, the impact of these elevated Dkk levels on wild-type hepatocytes is confined in space and magnitude. The combination of inter-and intracellular processes, such as Dkk feedback, diffusion and Wnt/beta-catenin signal transduction, allow wild-type hepatocytes to largely maintain their gene expression.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Niklas HartungORCiD, Uwe BenaryORCiDGND, Jana Wolf, Bente Kofahl
DOI:https://doi.org/10.1186/s12918-017-0470-9
ISSN:1752-0509
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/29029622
Title of parent work (English):BMC systems biology
Publisher:BioMed Central
Place of publishing:London
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Tag:APC concentration gradient; Dickkopf diffusion and feedback regulation; Mathematical model; Paracrine and autocrine regulation; Reaction-diffusion system; Wnt/beta-catenin signalling pathway
Volume:11
Number of pages:16
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.