• search hit 1 of 3
Back to Result List

Understanding cryptic schemata in large extract-transform-load systems

  • Extract-Transform-Load (ETL) tools are used for the creation, maintenance, and evolution of data warehouses, data marts, and operational data stores. ETL workflows populate those systems with data from various data sources by specifying and executing a DAG of transformations. Over time, hundreds of individual workflows evolve as new sources and new requirements are integrated into the system. The maintenance and evolution of large-scale ETL systems requires much time and manual effort. A key problem is to understand the meaning of unfamiliar attribute labels in source and target databases and ETL transformations. Hard-to-understand attribute labels lead to frustration and time spent to develop and understand ETL workflows. We present a schema decryption technique to support ETL developers in understanding cryptic schemata of sources, targets, and ETL transformations. For a given ETL system, our recommender-like approach leverages the large number of mapped attribute labels in existing ETL workflows to produce good and meaningfulExtract-Transform-Load (ETL) tools are used for the creation, maintenance, and evolution of data warehouses, data marts, and operational data stores. ETL workflows populate those systems with data from various data sources by specifying and executing a DAG of transformations. Over time, hundreds of individual workflows evolve as new sources and new requirements are integrated into the system. The maintenance and evolution of large-scale ETL systems requires much time and manual effort. A key problem is to understand the meaning of unfamiliar attribute labels in source and target databases and ETL transformations. Hard-to-understand attribute labels lead to frustration and time spent to develop and understand ETL workflows. We present a schema decryption technique to support ETL developers in understanding cryptic schemata of sources, targets, and ETL transformations. For a given ETL system, our recommender-like approach leverages the large number of mapped attribute labels in existing ETL workflows to produce good and meaningful decryptions. In this way we are able to decrypt attribute labels consisting of a number of unfamiliar few-letter abbreviations, such as UNP_PEN_INT, which we can decrypt to UNPAID_PENALTY_INTEREST. We evaluate our schema decryption approach on three real-world repositories of ETL workflows and show that our approach is able to suggest high-quality decryptions for cryptic attribute labels in a given schema.show moreshow less
  • Extract-Transform-Load (ETL) Tools werden häufig beim Erstellen, der Wartung und der Weiterentwicklung von Data Warehouses, Data Marts und operationalen Datenbanken verwendet. ETL Workflows befüllen diese Systeme mit Daten aus vielen unterschiedlichen Quellsystemen. Ein ETL Workflow besteht aus mehreren Transformationsschritten, die einen DAG-strukturierter Graphen bilden. Mit der Zeit entstehen hunderte individueller ETL Workflows, da neue Datenquellen integriert oder neue Anforderungen umgesetzt werden müssen. Die Wartung und Weiterentwicklung von großen ETL Systemen benötigt viel Zeit und manuelle Arbeit. Ein zentrales Problem ist dabei das Verständnis unbekannter Attributnamen in Quell- und Zieldatenbanken und ETL Transformationen. Schwer verständliche Attributnamen führen zu Frustration und hohen Zeitaufwänden bei der Entwicklung und dem Verständnis von ETL Workflows. Wir präsentieren eine Schema Decryption Technik, die ETL Entwicklern das Verständnis kryptischer Schemata in Quell- und Zieldatenbanken und ETL TransformationenExtract-Transform-Load (ETL) Tools werden häufig beim Erstellen, der Wartung und der Weiterentwicklung von Data Warehouses, Data Marts und operationalen Datenbanken verwendet. ETL Workflows befüllen diese Systeme mit Daten aus vielen unterschiedlichen Quellsystemen. Ein ETL Workflow besteht aus mehreren Transformationsschritten, die einen DAG-strukturierter Graphen bilden. Mit der Zeit entstehen hunderte individueller ETL Workflows, da neue Datenquellen integriert oder neue Anforderungen umgesetzt werden müssen. Die Wartung und Weiterentwicklung von großen ETL Systemen benötigt viel Zeit und manuelle Arbeit. Ein zentrales Problem ist dabei das Verständnis unbekannter Attributnamen in Quell- und Zieldatenbanken und ETL Transformationen. Schwer verständliche Attributnamen führen zu Frustration und hohen Zeitaufwänden bei der Entwicklung und dem Verständnis von ETL Workflows. Wir präsentieren eine Schema Decryption Technik, die ETL Entwicklern das Verständnis kryptischer Schemata in Quell- und Zieldatenbanken und ETL Transformationen erleichtert. Unser Ansatz berücksichtigt für ein gegebenes ETL System die Vielzahl verknüpfter Attributnamen in den existierenden ETL Workflows. So werden gute und aussagekräftige "Decryptions" gefunden und wir sind in der Lage Attributnamen, die aus unbekannten Abkürzungen bestehen, zu "decrypten". So wird z.B. für den Attributenamen UNP_PEN_INT als Decryption UNPAIN_PENALTY_INTEREST vorgeschlagen. Unser Schema Decryption Ansatz wurde für drei ETL-Repositories evaluiert und es zeigte sich, dass unser Ansatz qualitativ hochwertige Decryptions für kryptische Attributnamen vorschlägt.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Alexander AlbrechtORCiDGND, Felix NaumannORCiDGND
URN:urn:nbn:de:kobv:517-opus-61257
ISBN:978-3-86956-201-8
Series (Serial Number):Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam (60)
Publisher:Universitätsverlag Potsdam
Place of publication:Potsdam
Document Type:Monograph/Edited Volume
Language:English
Year of Completion:2012
Publishing Institution:Universität Potsdam
Release Date:2012/12/21
Tag:Data Warehouse; Datenintegration; Extract-Transform-Load (ETL)
Data Integration; Data Warehouse; Extract-Transform-Load (ETL)
Pagenumber:19
RVK - Regensburg Classification:ST 230
Organizational units:An-Institute / Hasso-Plattner-Institut für Digital Engineering gGmbH
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Publication Way:Universitätsverlag Potsdam
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
In Printform erschienen im Universitätsverlag Potsdam:

Understanding cryptic schemata in large extract-transform-load systems / Alexander Albrecht ; Felix Naumann. - Potsdam : Universitätsverlag Potsdam, 2012. - 19 S. : graph. Darst.
(Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam ; 60)
ISSN (print) 1613-5652
ISSN (online) 2191-1665
ISBN 978-3-86956-201-8
--> bestellen