• search hit 15 of 762
Back to Result List

A mechanistic framework for a priori pharmacokinetic predictions of orally inhaled drugs

  • Author summary <br /> The use of orally inhaled drugs for treating lung diseases is appealing since they have the potential for lung selectivity, i.e. high exposure at the site of action -the lung- without excessive side effects. However, the degree of lung selectivity depends on a large number of factors, including physiochemical properties of drug molecules, patient disease state, and inhalation devices. To predict the impact of these factors on drug exposure and thereby to understand the characteristics of an optimal drug for inhalation, we develop a predictive mathematical framework (a "pharmacokinetic model"). In contrast to previous approaches, our model allows combining knowledge from different sources appropriately and its predictions were able to adequately predict different sets of clinical data. Finally, we compare the impact of different factors and find that the most important factors are the size of the inhaled particles, the affinity of the drug to the lung tissue, as well as the rate of drug dissolution in the lung. InAuthor summary <br /> The use of orally inhaled drugs for treating lung diseases is appealing since they have the potential for lung selectivity, i.e. high exposure at the site of action -the lung- without excessive side effects. However, the degree of lung selectivity depends on a large number of factors, including physiochemical properties of drug molecules, patient disease state, and inhalation devices. To predict the impact of these factors on drug exposure and thereby to understand the characteristics of an optimal drug for inhalation, we develop a predictive mathematical framework (a "pharmacokinetic model"). In contrast to previous approaches, our model allows combining knowledge from different sources appropriately and its predictions were able to adequately predict different sets of clinical data. Finally, we compare the impact of different factors and find that the most important factors are the size of the inhaled particles, the affinity of the drug to the lung tissue, as well as the rate of drug dissolution in the lung. In contrast to the common belief, the solubility of a drug in the lining fluids is not found to be relevant. These findings are important to understand how inhaled drugs should be designed to achieve best treatment results in patients. <br /> The fate of orally inhaled drugs is determined by pulmonary pharmacokinetic processes such as particle deposition, pulmonary drug dissolution, and mucociliary clearance. Even though each single process has been systematically investigated, a quantitative understanding on the interaction of processes remains limited and therefore identifying optimal drug and formulation characteristics for orally inhaled drugs is still challenging. To investigate this complex interplay, the pulmonary processes can be integrated into mathematical models. However, existing modeling attempts considerably simplify these processes or are not systematically evaluated against (clinical) data. In this work, we developed a mathematical framework based on physiologically-structured population equations to integrate all relevant pulmonary processes mechanistically. A tailored numerical resolution strategy was chosen and the mechanistic model was evaluated systematically against data from different clinical studies. Without adapting the mechanistic model or estimating kinetic parameters based on individual study data, the developed model was able to predict simultaneously (i) lung retention profiles of inhaled insoluble particles, (ii) particle size-dependent pharmacokinetics of inhaled monodisperse particles, (iii) pharmacokinetic differences between inhaled fluticasone propionate and budesonide, as well as (iv) pharmacokinetic differences between healthy volunteers and asthmatic patients. Finally, to identify the most impactful optimization criteria for orally inhaled drugs, the developed mechanistic model was applied to investigate the impact of input parameters on both the pulmonary and systemic exposure. Interestingly, the solubility of the inhaled drug did not have any relevant impact on the local and systemic pharmacokinetics. Instead, the pulmonary dissolution rate, the particle size, the tissue affinity, and the systemic clearance were the most impactful potential optimization parameters. In the future, the developed prediction framework should be considered a powerful tool for identifying optimal drug and formulation characteristics.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Niklas HartungORCiD, Jens Markus BorghardtORCiDGND
DOI:https://doi.org/10.1371/journal.pcbi.1008466
ISSN:1553-734X
ISSN:1553-7358
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/33320846
Title of parent work (English):PLoS Computational Biology : a new community journal
Publisher:PLoS
Place of publishing:San Fransisco
Publication type:Article
Language:English
Date of first publication:2020/12/15
Publication year:2020
Release date:2023/03/28
Volume:16
Issue:12
Article number:e1008466
Number of pages:24
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.