• search hit 90 of 781
Back to Result List

Leaf image-based classification of some common bean cultivars using discriminative convolutional neural networks

  • In recent years, many efforts have been made to apply image processing techniques for plant leaf identification. However, categorizing leaf images at the cultivar/variety level, because of the very low inter-class variability, is still a challenging task. In this research, we propose an automatic discriminative method based on convolutional neural networks (CNNs) for classifying 12 different cultivars of common beans that belong to three various species. We show that employing advanced loss functions, such as Additive Angular Margin Loss and Large Margin Cosine Loss, instead of the standard softmax loss function for the classification can yield better discrimination between classes and thereby mitigate the problem of low inter-class variability. The method was evaluated by classifying species (level I), cultivars from the same species (level II), and cultivars from different species (level III), based on images from the leaf foreside and backside. The results indicate that the performance of the classification algorithm on the leafIn recent years, many efforts have been made to apply image processing techniques for plant leaf identification. However, categorizing leaf images at the cultivar/variety level, because of the very low inter-class variability, is still a challenging task. In this research, we propose an automatic discriminative method based on convolutional neural networks (CNNs) for classifying 12 different cultivars of common beans that belong to three various species. We show that employing advanced loss functions, such as Additive Angular Margin Loss and Large Margin Cosine Loss, instead of the standard softmax loss function for the classification can yield better discrimination between classes and thereby mitigate the problem of low inter-class variability. The method was evaluated by classifying species (level I), cultivars from the same species (level II), and cultivars from different species (level III), based on images from the leaf foreside and backside. The results indicate that the performance of the classification algorithm on the leaf backside image dataset is superior. The maximum mean classification accuracies of 95.86, 91.37 and 86.87% were obtained at the levels I, II and III, respectively. The proposed method outperforms the previous relevant works and provides a reliable approach for plant cultivars identification.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Hamad Tavakoli, Pendar Alirezazadeh, Ava HedayatipourORCiD, A. H. Banijamali Nasib, Niels LandwehrORCiDGND
DOI:https://doi.org/10.1016/j.compag.2020.105935
ISSN:0168-1699
ISSN:1872-7107
Title of parent work (English):Computers and electronics in agriculture : COMPAG online ; an international journal
Publisher:Elsevier
Place of publishing:Amsterdam [u.a.]
Publication type:Article
Language:English
Date of first publication:2021/02/01
Publication year:2021
Release date:2024/06/03
Tag:Bean; Digital image analysis; Loss; Plant identification; VGG16; functions
Volume:181
Article number:105935
Number of pages:11
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Informatik und Computational Science
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
6 Technik, Medizin, angewandte Wissenschaften / 63 Landwirtschaft / 630 Landwirtschaft und verwandte Bereiche
6 Technik, Medizin, angewandte Wissenschaften / 64 Hauswirtschaft und Familie / 640 Hauswirtschaft und Familie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.