• search hit 2 of 3
Back to Result List

Linking stream microbial community functional genes to dissolved organic matter and inorganic nutrients

  • There is now increasing evidence for the importance of microbial regulation of biogeochemical cycling in streams. Resource availability shapes microbial community structure, but less is known about how landscape-mediated availability of nutrients and carbon can control microbial functions in streams. Using comparative metagenomics, we examined the relationship between microbial functional genes and composition of dissolved organic matter (DOM), nutrients, and suspended microbial communities in 11 streams, divided into three groups based on the predominant land cover category (agriculture, forested, or wetland). Using weighted gene co-occurrence network analysis, we identified clusters of functions related to DOM composition, agricultural land use, and/or wetland and forest land cover. Wetland-dominated streams were characterized by functions related to nitrogen metabolism and processing of aromatic carbon compounds, with strong positive correlations with dissolved organic carbon concentration and DOM aromaticity. Forested streams wereThere is now increasing evidence for the importance of microbial regulation of biogeochemical cycling in streams. Resource availability shapes microbial community structure, but less is known about how landscape-mediated availability of nutrients and carbon can control microbial functions in streams. Using comparative metagenomics, we examined the relationship between microbial functional genes and composition of dissolved organic matter (DOM), nutrients, and suspended microbial communities in 11 streams, divided into three groups based on the predominant land cover category (agriculture, forested, or wetland). Using weighted gene co-occurrence network analysis, we identified clusters of functions related to DOM composition, agricultural land use, and/or wetland and forest land cover. Wetland-dominated streams were characterized by functions related to nitrogen metabolism and processing of aromatic carbon compounds, with strong positive correlations with dissolved organic carbon concentration and DOM aromaticity. Forested streams were characterized by metabolic functions related to monomer uptake and carbohydrates, such as mannose and fructose metabolism. In agricultural streams, microbial functions were correlated with more labile, protein-like DOM, PO4, and NO3, likely reflecting functional adaptation to labile DOM and higher nutrient concentrations. Distinct changes in the functional composition and loss of functional diversity of microorganisms became evident when comparing natural to agricultural catchments. Although all streams showed signs of functional redundancy, loss of species richness per function in agricultural catchments suggests that microbial functions in natural catchments may be more resilient to disturbance. Our results provide new insight into microbial community functions involved in nutrient and carbon biogeochemical cycles and their dependence on specific environmental settings.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Christina FaschingORCiDGND, Christian Akotoye, Mina BižićGND, Jeremy Andre FonvielleORCiD, Danny IonescuORCiD, Sabateeshan Mathavarajah, Luca ZoccaratoORCiD, David A. WalshORCiD, Hans-Peter GrossartORCiDGND, Marguerite A. XenopoulosORCiD
DOI:https://doi.org/10.1002/lno.11356
ISSN:0024-3590
ISSN:1939-5590
Title of parent work (English):Limnology and oceanography
Publisher:Wiley
Place of publishing:Hoboken
Publication type:Article
Language:English
Date of first publication:2019/12/10
Publication year:2020
Release date:2021/06/01
Volume:65
Number of pages:17
First page:S71
Last Page:S87
Funding institution:(NSERC)Natural Sciences and Engineering Research Council of Canada; German Ministry of Education and Science (BMBF)Federal Ministry of Education & Research (BMBF) [01LC1501G]; Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [BI 1987/2-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY-NC - Namensnennung, nicht kommerziell 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.