• search hit 1 of 2
Back to Result List

The logarithmic residue density of a generalized Laplacian

  • We show that the residue density of the logarithm of a generalized Laplacian on a closed manifold defines an invariant polynomial-valued differential form. We express it in terms of a finite sum of residues of classical pseudodifferential symbols. In the case of the square of a Dirac operator, these formulas provide a pedestrian proof of the Atiyah–Singer formula for a pure Dirac operator in four dimensions and for a twisted Dirac operator on a flat space of any dimension. These correspond to special cases of a more general formula by Scott and Zagier. In our approach, which is of perturbative nature, we use either a Campbell–Hausdorff formula derived by Okikiolu or a noncommutative Taylor-type formula.

Download full text files

  • SHA-1: 7f70fb544f252774eb7b269ee3da49ad05507f03

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Author:Jouko Mickelsson, Sylvie PaychaORCiDGND
Parent Title (English):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Series (Serial Number):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (649)
Document Type:Postprint
Date of first Publication:2019/02/25
Year of Completion:2011
Publishing Institution:Universität Potsdam
Release Date:2019/02/25
Tag:Dirac operators; index; residue
Page Number:28
Source:Journal of the Australian Mathematical Society 90 (2011), pp. 53–80 DOI 10.1017/S144678871100108X
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Peer Review:Referiert
Publication Way:Open Access
Grantor:Cambridge University Press (CUP)
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:Bibliographieeintrag der Originalveröffentlichung/Quelle