The logarithmic residue density of a generalized Laplacian
- We show that the residue density of the logarithm of a generalized Laplacian on a closed manifold defines an invariant polynomial-valued differential form. We express it in terms of a finite sum of residues of classical pseudodifferential symbols. In the case of the square of a Dirac operator, these formulas provide a pedestrian proof of the Atiyah–Singer formula for a pure Dirac operator in four dimensions and for a twisted Dirac operator on a flat space of any dimension. These correspond to special cases of a more general formula by Scott and Zagier. In our approach, which is of perturbative nature, we use either a Campbell–Hausdorff formula derived by Okikiolu or a noncommutative Taylor-type formula.
Author: | Jouko Mickelsson, Sylvie PaychaORCiDGND |
---|---|
URN: | urn:nbn:de:kobv:517-opus4-413680 |
DOI: | https://doi.org/10.25932/publishup-41368 |
ISSN: | 1866-8372 |
Parent Title (English): | Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe |
Series (Serial Number): | Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (649) |
Document Type: | Postprint |
Language: | English |
Date of first Publication: | 2019/02/25 |
Year of Completion: | 2011 |
Publishing Institution: | Universität Potsdam |
Release Date: | 2019/02/25 |
Tag: | Dirac operators; index; residue |
Issue: | 649 |
Page Number: | 28 |
Source: | Journal of the Australian Mathematical Society 90 (2011), pp. 53–80 DOI 10.1017/S144678871100108X |
Organizational units: | Mathematisch-Naturwissenschaftliche Fakultät |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Peer Review: | Referiert |
Publication Way: | Open Access |
Grantor: | Cambridge University Press (CUP) |
Licence (German): | ![]() |
Notes extern: | Bibliographieeintrag der Originalveröffentlichung/Quelle |