• Treffer 2 von 2
Zurück zur Trefferliste

General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types

  • Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso-and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate orVery few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso-and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Klaus Birkhofer, Ingo Schöning, Fabian Alt, Nadine Herold, Bernhard Klarner, Mark Maraun, Sven Marhan, Yvonne Oelmann, Tesfaye Wubet, Andrey Yurkov, Dominik Begerow, Doreen Berner, Francois Buscot, Rolf Daniel, Tim Diekötter, Roswitha B. Ehnes, Georgia Erdmann, Christiane Fischer, Baerbel Fösel, Janine Groh, Jessica Gutknecht, Ellen Kandeler, Christa Lang, Gertrud Lohaus, Annabel Meyer, Heiko Nacke, Astrid Näther, Jörg OvermannGND, Andrea Polle, Melanie M. Pollierer, Stefan Scheu, Michael Schloter, Ernst-Detlef Schulze, Waltraud X. Schulze, Jan Weinert, Wolfgang W. Weisser, Volkmar Wolters, Marion Schrumpf
DOI:https://doi.org/10.1371/journal.pone.0043292
ISSN:1932-6203
Titel des übergeordneten Werks (Englisch):PLoS one
Verlag:PLoS
Verlagsort:San Fransisco
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2012
Erscheinungsjahr:2012
Datum der Freischaltung:26.03.2017
Band:7
Ausgabe:8
Seitenanzahl:8
Fördernde Institution:DFG (Deutsche Forschungsgemeinschaft) [1374]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert
Publikationsweg:Open Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.