• search hit 1 of 11
Back to Result List

Surface electromyographic amplitude does not identify differences in neural drive to synergistic muscles

  • Surface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10. 30. 50, and 70% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL (P < 0.001), whereas the EMG amplitude normalized with respect to MVC was greater for VL than VM (P < 0.04). Because differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose. we analyzed the increase in discharge rate from recruitment to target torque for motor units matched bySurface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10. 30. 50, and 70% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL (P < 0.001), whereas the EMG amplitude normalized with respect to MVC was greater for VL than VM (P < 0.04). Because differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose. we analyzed the increase in discharge rate from recruitment to target torque for motor units matched by recruitment threshold in the two muscles. This analysis indicated that the two muscles received similar levels of neural drive. Nonetheless, the size of the MU action potentials was greater for VM than VL (P < 0.001), and this difference explained most of the differences in EMG amplitude between the two muscles (similar to 63% of explained variance). These results indicate that EMG amplitude, even following normalization, does not reflect the neural drive to synergistic muscles. Moreover, absolute EMG amplitude is mainly explained by the size of MU action potentials. NEW & NOTEWORTHY Electromyographic (EMG) amplitude is widely used to compare indirectly the strength of neural drive received by synergistic muscles. However, there are no studies validating this approach with motor unit data. Here, we compared between-muscles differences in surface EMG amplitude and motor unit behavior. The results clarify the limitations of surface EMG to interpret differences in neural drive between muscles.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Eduardo Andrés Martinez-ValdesORCiDGND, Francesco NegroORCiD, Deborah Falla, Alessandro Marco De NunzioORCiD, Dario FarinaORCiD
DOI:https://doi.org/10.1152/japplphysiol.01115.2017
ISSN:8750-7587
ISSN:1522-1601
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/29420155
Title of parent work (English):Journal of applied physiology
Publisher:American Chemical Society
Place of publishing:Bethesda
Publication type:Article
Language:English
Date of first publication:2018/04/01
Publication year:2018
Release date:2021/12/15
Tag:amplitude; high-density surface EMG: synergistic muscles; motor unit; motor unit action potential; surface electromyography
Volume:124
Issue:4
Number of pages:9
First page:1071
Last Page:1079
Funding institution:Marie Sklodowska-Curie Grant [702491]
Organizational units:Humanwissenschaftliche Fakultät / Strukturbereich Kognitionswissenschaften / Department Sport- und Gesundheitswissenschaften
DDC classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.