The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 12
Back to Result List

Orogenic wedge advance in the northern Andes : evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia

  • Foreland basin development in the Andes of central Colombia has been suggested to have started in the Late Cretaceous through tectonic loading of the Central Cordillera. Eastward migration of the Cenozoic orogenic front has also been inferred from the foreland basin record west of the Eastern Cordillera. However, farther east, limited data provided by foreland basin strata and the adjacent Eastern Cordillera complicate any correlation among mountain building, exhumation, and foreland basin sedimentation. In this study, we present new data from the Medina Basin in the eastern foothills of the Eastern Cordillera of Colombia. We report sedimentological data and palynological ages that link an eastward-thinning early Oligocene to early Miocene syntectonic wedge containing rapid facies changes with an episode of fast tectonic subsidence starting at ca. 31 Ma. This record may represent the first evidence of topographic loading generated by slip along the principal basement-bounding thrusts in the Eastern Cordillera to the southwest of theForeland basin development in the Andes of central Colombia has been suggested to have started in the Late Cretaceous through tectonic loading of the Central Cordillera. Eastward migration of the Cenozoic orogenic front has also been inferred from the foreland basin record west of the Eastern Cordillera. However, farther east, limited data provided by foreland basin strata and the adjacent Eastern Cordillera complicate any correlation among mountain building, exhumation, and foreland basin sedimentation. In this study, we present new data from the Medina Basin in the eastern foothills of the Eastern Cordillera of Colombia. We report sedimentological data and palynological ages that link an eastward-thinning early Oligocene to early Miocene syntectonic wedge containing rapid facies changes with an episode of fast tectonic subsidence starting at ca. 31 Ma. This record may represent the first evidence of topographic loading generated by slip along the principal basement-bounding thrusts in the Eastern Cordillera to the southwest of the basin. Zircon fission-track ages and paleo-current analysis reveal the location of these thrust loads and illustrate a time lag between the sedimentary signal of topographic loading and the timing of exhumation (ca. 18 Ma). This lag may reflect the period between the onset of range uplift and significant removal of overburden. Vitrinite reflectance data document northward along-strike propagation of the deformation front and folding of the Oligocene syntectonic wedge. This deformation was coupled with a nonuniform incorporation of the basin into the wedge-top depozone. Thus, our data set constitutes unique evidence for the early growth and propagation of the deformation front in the Eastern Cordillera, which may also improve our understanding of spatiotemporal patterns of foreland evolution in other mountain belts.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Mauricio Parra, Andrés Mora, Carlos Jaramillo, Manfred StreckerORCiDGND, Edward SobelORCiDGND, Luis Quiroz, Milton Rueda, Vladimir Torres
URL:http://gsabulletin.gsapubs.org/
DOI:https://doi.org/10.1130/B26257.1
ISSN:0016-7606
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Geological Society of America bulletin. - ISSN 0016-7606. - 121 (2009), 5-6, S. 780 - 800
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.