The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 12
Back to Result List

Controls of event-based pesticide leaching in natural soils: A systematic study based on replicated field scale irrigation experiments

  • Tile drains strongly influence the water cycle in agricultural catchment in terms of water quantity and quality. The connectivity of preferential flow to tile drains can create shortcuts for rapid transport of solutes into surface waters. The leaching of pesticides can be linked to a set of main factors including, rainfall characteristics, soil moisture, chemical properties of the pesticides, soil properties, and preferential flow paths. The connectivity of the macropore system to the tile drain is crucial for pesticide leaching. Concurring influences of the main factors, threshold responses and the role of flow paths are still poorly understood. The objective of this study is to investigate these influences by a replica series of three irrigation experiments on a tile drain field site using natural and artificial tracers together with applied pesticides. We found a clear threshold behavior in the initialization of pesticide transport that was different between the replica experiments. Pre-event soil water contributed significantly toTile drains strongly influence the water cycle in agricultural catchment in terms of water quantity and quality. The connectivity of preferential flow to tile drains can create shortcuts for rapid transport of solutes into surface waters. The leaching of pesticides can be linked to a set of main factors including, rainfall characteristics, soil moisture, chemical properties of the pesticides, soil properties, and preferential flow paths. The connectivity of the macropore system to the tile drain is crucial for pesticide leaching. Concurring influences of the main factors, threshold responses and the role of flow paths are still poorly understood. The objective of this study is to investigate these influences by a replica series of three irrigation experiments on a tile drain field site using natural and artificial tracers together with applied pesticides. We found a clear threshold behavior in the initialization of pesticide transport that was different between the replica experiments. Pre-event soil water contributed significantly to the tile drain flow, and creates a flow path for stored pesticides from the soil matrix to the tile drain. This threshold is controlled by antecedent soil moisture and precipitation characteristics, and the interaction between the soil matrix and preferential flow system. Fast transport of pesticides without retardation and the remobilization could be attributed to this threshold and the interaction between the soil matrix and the preferential flow system. Thus, understanding of the detailed preferential flow processes clearly enhances the understanding of pesticide leaching on event and long term scale, and can further improve risk assessment and modeling approaches. (C) 2014 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Julian Klaus, Erwin Zehe, Martin Elsner, Juliane Palm, Dorothee Schneider, Boris Schroeder, Sibylle Steinbeiss, Loes van Schaik, Stephanie West
DOI:https://doi.org/10.1016/j.jhydrol.2014.03.020
ISSN:0022-1694
ISSN:1879-2707
Title of parent work (English):Journal of hydrology
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Tag:Irrigation experiment; Pesticide transport; Preferential flow; Threshold
Volume:512
Number of pages:12
First page:528
Last Page:539
Funding institution:German Research Foundation (Deutsche Forschungsgemeinschaft DFG); BIOPORE [ZE 533/5-1, SCHR1000/3-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.