The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 12
Back to Result List

Structures and hydrologic function of soil landscapes with kettle holes using an integrated hydropedological approach

  • The hummocky post-glacial soil landscapes with kettle holes as internal drainage systems are characterized by ponds that trap lateral fluxes in topographic depressions. A quantitative description is mostly limited by the unknown complexity of hydraulically relevant soil and sediment structures. This paper is focussing on a structure-based approach to identify relevant field-scale flow and transport processes. Illustrative examples demonstrate extreme variations in water table fluctuation for adjoining kettle holes. Explanations require a pedohydrologic concept of the arable soil landscape. Identification of structures is based on geophysical methods and soil hydraulic measurements. Electrical resistivity imaging yields 0.5 m-scale spatial structures that correspond with soil texture distributions. Electromagnetic induction provides larger-scale field maps that reflect major soil and sediment features. Results of both methods correspond within the limits of the different spatial resolutions. With geophysical exploration methods,The hummocky post-glacial soil landscapes with kettle holes as internal drainage systems are characterized by ponds that trap lateral fluxes in topographic depressions. A quantitative description is mostly limited by the unknown complexity of hydraulically relevant soil and sediment structures. This paper is focussing on a structure-based approach to identify relevant field-scale flow and transport processes. Illustrative examples demonstrate extreme variations in water table fluctuation for adjoining kettle holes. Explanations require a pedohydrologic concept of the arable soil landscape. Identification of structures is based on geophysical methods and soil hydraulic measurements. Electrical resistivity imaging yields 0.5 m-scale spatial structures that correspond with soil texture distributions. Electromagnetic induction provides larger-scale field maps that reflect major soil and sediment features. Results of both methods correspond within the limits of the different spatial resolutions. With geophysical exploration methods, colluvial areas with textural differences between upper and deeper soil layers, coarse-textured sediment lenses, and stony colluvial regions around kettle holes are identified as potentially relevant flow structures. The colluvial fringe around the pond seems to be a sensitive area with important lateral exchange fluxes. Tensiometer measurements perpendicular to this boundary indicate hydraulic gradients directed from the pond towards the partially saturated soil. The localized infiltration of trapped water in kettle holes can control large fractions of ground water recharge and may have implications for the fate of agricultural chemicals in post-glacial landscapes. While surface and subsurface hydraulic structures may be inferred using minimal-invasive techniques, better understanding of processes and properties governing lateral exchange fluxes between pond and surrounding soil are required.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Horst H. GerkeORCiD, Sylvia Koszinski, Thomas Kalettka, Michael SommerORCiDGND
URL:http://www.sciencedirect.com/science/journal/00221694
DOI:https://doi.org/10.1016/j.jhydrol.2009.12.047
ISSN:0022-1694
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Journal of hydrology. - ISSN 0022-1694. - 393 (2010), 1-2, S. 123 - 132
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.