• search hit 1 of 0
Back to Result List

Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting

  • The synthesis, structure, and photocatalytic water splitting performance of two new titania (TiO 2 )/gold(Au)/Bombyx mori silk hybrid materials are reported. All materials are monoliths with diameters of up to ca. 4.5 cm. The materials are macroscopically homogeneous and porous with surface areas between 170 and 210 m 2/g. The diameter of the TiO 2 nanoparticles (NPs) – mainly anatase with a minor fraction of brookite – and the Au NPs are on the order of 5 and 7–18 nm, respectively. Addition of poly(ethylene oxide) to the reaction mixture enables pore size tuning, thus providing access to different materials with different photocatalytic activities. Water splitting experiments using a sunlight simulator and a Xe lamp show that the new hybrid materials are effective water splitting catalysts and produce up to 30 mmol of hydrogen per 24 h. Overall the article demonstrates that the combination of a renewable and robust scaffold such as B. mori silk with a photoactive material provides a promising approach to new monolithic photocatalystsThe synthesis, structure, and photocatalytic water splitting performance of two new titania (TiO 2 )/gold(Au)/Bombyx mori silk hybrid materials are reported. All materials are monoliths with diameters of up to ca. 4.5 cm. The materials are macroscopically homogeneous and porous with surface areas between 170 and 210 m 2/g. The diameter of the TiO 2 nanoparticles (NPs) – mainly anatase with a minor fraction of brookite – and the Au NPs are on the order of 5 and 7–18 nm, respectively. Addition of poly(ethylene oxide) to the reaction mixture enables pore size tuning, thus providing access to different materials with different photocatalytic activities. Water splitting experiments using a sunlight simulator and a Xe lamp show that the new hybrid materials are effective water splitting catalysts and produce up to 30 mmol of hydrogen per 24 h. Overall the article demonstrates that the combination of a renewable and robust scaffold such as B. mori silk with a photoactive material provides a promising approach to new monolithic photocatalysts that can easily be recycled and show great potential for application in lightweight devices for green fuel production.show moreshow less

Download full text files

  • pmnr581.pdfeng
    (11878KB)

    SHA-1: 6389119513b18211ba4cac55ec0cd396e22deb5f

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Stefanie KrügerGND, Michael Schwarze, Otto BaumannORCiDGND, Christina GünterGND, Michael BrunsORCiD, Christian KübelORCiD, Dorothée Vinga SzabóORCiD, Rafael Meinusch, Verónica de Zea BermudezORCiD, Andreas TaubertORCiDGND
URN:urn:nbn:de:kobv:517-opus4-423499
DOI:https://doi.org/10.25932/publishup-42349
ISSN:1866-8372
Title of parent work (English):Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe
Subtitle (English):combining renewable raw materials with clean fuels
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (581)
Publication type:Postprint
Language:English
Date of first publication:2019/02/07
Publication year:2018
Publishing institution:Universität Potsdam
Release date:2019/02/07
Tag:Bombyx mori silk; gold; photocatalytic water splitting; titania
Issue:581
Number of pages:18
Source:Beilstein Journal of Nanotechnology 9 (2018) S. 187–204 DOI: 10.3762/bjnano.9.21
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Peer review:Referiert
Publishing method:Open Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.