The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 10 of 14
Back to Result List

Soil Nutrient Detection for Precision Agriculture Using Handheld Laser-Induced Breakdown Spectroscopy (LIBS) and Multivariate Regression Methods (PLSR, Lasso and GPR)

  • Precision agriculture (PA) strongly relies on spatially differentiated sensor information. Handheld instruments based on laser-induced breakdown spectroscopy (LIBS) are a promising sensor technique for the in-field determination of various soil parameters. In this work, the potential of handheld LIBS for the determination of the total mass fractions of the major nutrients Ca, K, Mg, N, P and the trace nutrients Mn, Fe was evaluated. Additionally, other soil parameters, such as humus content, soil pH value and plant available P content, were determined. Since the quantification of nutrients by LIBS depends strongly on the soil matrix, various multivariate regression methods were used for calibration and prediction. These include partial least squares regression (PLSR), least absolute shrinkage and selection operator regression (Lasso), and Gaussian process regression (GPR). The best prediction results were obtained for Ca, K, Mg and Fe. The coefficients of determination obtained for other nutrients were smaller. This is due to muchPrecision agriculture (PA) strongly relies on spatially differentiated sensor information. Handheld instruments based on laser-induced breakdown spectroscopy (LIBS) are a promising sensor technique for the in-field determination of various soil parameters. In this work, the potential of handheld LIBS for the determination of the total mass fractions of the major nutrients Ca, K, Mg, N, P and the trace nutrients Mn, Fe was evaluated. Additionally, other soil parameters, such as humus content, soil pH value and plant available P content, were determined. Since the quantification of nutrients by LIBS depends strongly on the soil matrix, various multivariate regression methods were used for calibration and prediction. These include partial least squares regression (PLSR), least absolute shrinkage and selection operator regression (Lasso), and Gaussian process regression (GPR). The best prediction results were obtained for Ca, K, Mg and Fe. The coefficients of determination obtained for other nutrients were smaller. This is due to much lower concentrations in the case of Mn, while the low number of lines and very weak intensities are the reason for the deviation of N and P. Soil parameters that are not directly related to one element, such as pH, could also be predicted. Lasso and GPR yielded slightly better results than PLSR. Additionally, several methods of data pretreatment were investigated.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Alexander ErlerORCiD, Daniel RiebeORCiDGND, Toralf BeitzORCiD, Hans-Gerd LöhmannsröbenORCiDGND, Robin GebbersORCiDGND
DOI:https://doi.org/10.3390/s20020418
ISSN:1424-8220
Parent Title (English):Sensors
Publisher:MDPI
Place of publication:Basel
Document Type:Article
Language:English
Date of first Publication:2020/01/11
Year of Completion:2019
Release Date:2020/02/06
Tag:LIBS; PLS regression; gaussian processes; lasso; nutrients; precision agriculture; soil
Volume:20
Issue:2
Pagenumber:17
Funder:Universität Potsdam
Grant Number:PA 2020_006
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Peer Review:Referiert
Grantor:Publikationsfonds der Universität Potsdam
Publication Way:Open Access
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International
Notes extern:Zweitveröffentlichung in der Schriftenreihe Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 815