• search hit 5 of 27
Back to Result List

Sub-ambient pressure IR-MALDI ion mobility spectrometer for the determination of low and high field mobilities

  • A new ion mobility (IM) spectrometer, enabling mobility measurements in the pressure range between 5 and 500 mbar and in the reduced field strength range E/N of 5-90 Td, was developed and characterized. Reduced mobility (K-0) values were studied under low E/N (constant value) as well as high E/N (deviation from low field K-0) for a series of molecular ions in nitrogen. Infrared matrix-assisted laser desorption ionization (IR-MALDI) was used in two configurations: a source working at atmospheric pressure (AP) and, for the first time, an IR-MALDI source working with a liquid (aqueous) matrix at sub-ambient/reduced pressure (RP). The influence of RP on IR-MALDI was examined and new insights into the dispersion process were gained. This enabled the optimization of the IM spectrometer for best analytical performance. While ion desolvation is less efficient at RP, the transport of ions is more efficient, leading to intensity enhancement and an increased number of oligomer ions. When deciding between AP and RP IR-MALDI, a trade-off betweenA new ion mobility (IM) spectrometer, enabling mobility measurements in the pressure range between 5 and 500 mbar and in the reduced field strength range E/N of 5-90 Td, was developed and characterized. Reduced mobility (K-0) values were studied under low E/N (constant value) as well as high E/N (deviation from low field K-0) for a series of molecular ions in nitrogen. Infrared matrix-assisted laser desorption ionization (IR-MALDI) was used in two configurations: a source working at atmospheric pressure (AP) and, for the first time, an IR-MALDI source working with a liquid (aqueous) matrix at sub-ambient/reduced pressure (RP). The influence of RP on IR-MALDI was examined and new insights into the dispersion process were gained. This enabled the optimization of the IM spectrometer for best analytical performance. While ion desolvation is less efficient at RP, the transport of ions is more efficient, leading to intensity enhancement and an increased number of oligomer ions. When deciding between AP and RP IR-MALDI, a trade-off between intensity and resolving power has to be considered. Here, the low field mobility of peptide ions was first measured and compared with reference values from ESI-IM spectrometry (at AP) as well as collision cross sections obtained from molecular dynamics simulations. The second application was the determination of the reduced mobility of various substituted ammonium ions as a function of E/N in nitrogen. The mobility is constant up to a threshold at high E/N. Beyond this threshold, mobility increases were observed. This behavior can be explained by the loss of hydrated water molecules.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:José Andrés Villatoro LealORCiDGND, Martin ZühlkeGND, Daniel RiebeORCiDGND, Toralf BeitzORCiD, Marcus Weber, Hans-Gerd LöhmannsröbenORCiDGND
DOI:https://doi.org/10.1007/s00216-020-02735-0
ISSN:1618-2642
ISSN:1618-2650
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/32488389
Title of parent work (English):Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica
Publisher:Springer
Place of publishing:Heidelberg
Publication type:Article
Language:English
Date of first publication:2020/06/02
Publication year:2020
Release date:2023/03/24
Tag:IR-MALDI; dub-ambient; high field mobility; ion mobility spectrometry; peptides; pressure
Volume:412
Issue:22
Number of pages:14
First page:5247
Last Page:5260
Funding institution:German Excellence Initiative (DFG - Deutsche; Forschungsgemeinschaft)German Research Foundation (DFG); School of; Analytical Sciences Adlershof (SALSA)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.