The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 48
Back to Result List

Geological setting and age of the Middle Paleolithic site of Nahal Mahanayeem Outlet (Upper Jordan Valley, Israel)

  • In this paper we present the sedimentary features and the luminescence chronology for Nahal Mahanayeem Outlet (NMO), an archaeological open air site at the southern margin of the Hula Basin (Northern Jordan Rift Valley, Israel). The site is characterized by a lithic assemblage ascribed primarily to the Middle Paleolithic Mousterian tradition, and by an excellent preservation of floral and faunal remains. Six geological units forming the stratigraphic sequence of the site were distinguished: (Unit 6) archaeologically sterile, light-colored limnic carbonates; (Unit 5) conglomerates of rounded basalt boulders and cobbles forming a hill-like topography; (Unit 4 and Unit 3) a sequence of similar dark silty sediments, attached to and overlaying the conglomerates, containing the archaeological horizons of the site; (Unit 2) a number of channels cutting into the top of Unit 3, filled with coarse sand and rounded basalt and limestone gravels of fluvial origin; and (Unit 1) a thin sand layer laid down by the present-day Jordan River coveringIn this paper we present the sedimentary features and the luminescence chronology for Nahal Mahanayeem Outlet (NMO), an archaeological open air site at the southern margin of the Hula Basin (Northern Jordan Rift Valley, Israel). The site is characterized by a lithic assemblage ascribed primarily to the Middle Paleolithic Mousterian tradition, and by an excellent preservation of floral and faunal remains. Six geological units forming the stratigraphic sequence of the site were distinguished: (Unit 6) archaeologically sterile, light-colored limnic carbonates; (Unit 5) conglomerates of rounded basalt boulders and cobbles forming a hill-like topography; (Unit 4 and Unit 3) a sequence of similar dark silty sediments, attached to and overlaying the conglomerates, containing the archaeological horizons of the site; (Unit 2) a number of channels cutting into the top of Unit 3, filled with coarse sand and rounded basalt and limestone gravels of fluvial origin; and (Unit 1) a thin sand layer laid down by the present-day Jordan River covering another unconformity as a result of heavy machinery drainage operations in 1999. The OSL age for Unit 6 yielded a minimum age older than 460 ka. Sedimentary features and the embedded fossils suggest that Unit 1 can be linked to the Early Pleistocene Gadot Chalk. Unit 5 represents a local geological feature and could be an indicator for a period of increased erosion with formation of coarse grained sediments. The archaeological horizons form the lower parts of Unit 4 and yielded OSL-ages between 55 and 65 ka, indicating an affiliation to the sediments called "Ashmura Formation" with an Upper Pleistocene age for the site. The channel fills of Unit 2 can be dated by the recovered artifacts. These range in age from the Upper Paleolithic (Aurignacian) to historic times. Unit 1 is recent. The study of the complex NMO stratigraphy, combined with coherent OSL chronology, has enabled us to reconstruct parts of the geological history of the Hula Basin during the Late Pleistocene. It is this history that forms the background for the human migration and utilization of natural resources in the Upper Jordan Rift Valley. (C) 2013 Elsevier Ltd and INQUA. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Johannes Kalbe, Gonen Sharon, Naomi Porat, Chengjun Zhang, Steffen MischkeORCiDGND
DOI:https://doi.org/10.1016/j.quaint.2013.05.052
ISSN:1040-6182
ISSN:1873-4553
Title of parent work (English):Quaternary international : the journal of the International Union for Quaternary Research
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:331
Number of pages:10
First page:139
Last Page:148
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.