• Treffer 1 von 1
Zurück zur Trefferliste

Bioelectrocatalysis at mesoporous antimony doped tin oxide electrodes-Electrochemical characterization and direct enzyme communication

  • In this paper we report immobilization and bioelectrocatalysis of human sulfite oxidase (hSO) on nanostructured antimony doped tin oxide (ATO) thin film electrodes. Two types of ATO thin film electrodes were prepared via evaporation induced self-assembly of ATO nanoparticle sols. The use of a porogen results in different porosity and film thickness. Nevertheless both electrode types reveal similar quasi reversible electrochemical behavior for positive and negatively charged small mediators. Facile and durable immobilization of catalytically active enzyme in a direct electron transfer configuration was achieved without further chemical modification of the ATO surfaces. Interestingly, the binding of hSO onto the ATO surface seems to be not only of electrostatic nature, but also originates from a strong interaction between the histidine-tag of the enzyme and the supporting material. This is suggested from stable sulfite dependent bioelectrocatalytic signals at high ionic strength and imidazole desorption experiments. As such, ATO appearsIn this paper we report immobilization and bioelectrocatalysis of human sulfite oxidase (hSO) on nanostructured antimony doped tin oxide (ATO) thin film electrodes. Two types of ATO thin film electrodes were prepared via evaporation induced self-assembly of ATO nanoparticle sols. The use of a porogen results in different porosity and film thickness. Nevertheless both electrode types reveal similar quasi reversible electrochemical behavior for positive and negatively charged small mediators. Facile and durable immobilization of catalytically active enzyme in a direct electron transfer configuration was achieved without further chemical modification of the ATO surfaces. Interestingly, the binding of hSO onto the ATO surface seems to be not only of electrostatic nature, but also originates from a strong interaction between the histidine-tag of the enzyme and the supporting material. This is suggested from stable sulfite dependent bioelectrocatalytic signals at high ionic strength and imidazole desorption experiments. As such, ATO appears as a promising conductive platform for the immobilization of complex enzymes and their application in bioelectrocatalysis. (C) 2013 Elsevier Ltd. All rights reserved.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Stefano Frasca, Anabel Molero Milan, Amandine Guiet, Caren Goebel, Fernando Perez-Caballero, Konstanze Stiba, Silke LeimkühlerORCiDGND, Anna Fischer, Ursula WollenbergerORCiDGND
DOI:https://doi.org/10.1016/j.electacta.2013.03.144
ISSN:0013-4686
ISSN:1873-3859
Titel des übergeordneten Werks (Englisch):ELECTROCHIMICA ACTA
Verlag:PERGAMON-ELSEVIER SCIENCE LTD
Verlagsort:OXFORD
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2013
Erscheinungsjahr:2013
Datum der Freischaltung:26.03.2017
Freies Schlagwort / Tag:Antimony doped tin dioxide; Bioelectrocatalysis; Biosensor; Direct electrochemistry; Sulfite oxidase
Band:110
Ausgabe:2
Seitenanzahl:9
Erste Seite:172
Letzte Seite:180
Fördernde Institution:Deutsche Forschungsgemeinschaft [EXC 314]; DFG [SM 199/7-1]; European Union (EFRE) [ILB-Brandenburg 80136126]; BMBF [03IS2201B]; Cluster of Excellence "Unifying Concepts in Catalysis"
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.