• search hit 1 of 10
Back to Result List

Constraints on post-depositional isotope modifications in East Antarctic firn from analysing temporal changes of isotope profiles

  • The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (greater than or similar to 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporalThe isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (greater than or similar to 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (<< 1 parts per thousand RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow.show moreshow less

Download full text files

  • pmnr662.pdfeng
    (5425KB)

    SHA-1: eb9839ae1e17110e3650217e79d1a5dbb537eb56

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Thomas MünchORCiDGND, Sepp Kipfstuhl, Johannes Freitag, Hanno MeyerORCiDGND, Thomas LaeppleORCiDGND
URN:urn:nbn:de:kobv:517-opus4-418763
DOI:https://doi.org/10.25932/publishup-41876
ISSN:1866-8372
Parent Title (English):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Series (Serial Number):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (662)
Document Type:Postprint
Language:English
Date of first Publication:2019/03/01
Year of Completion:2017
Publishing Institution:Universität Potsdam
Release Date:2019/03/01
Tag:Dronning Maud Land; Ice core records; Kohnen Station; climate; diffusion; near-surface snow; polar firn; precipitation; stable isotopes; water isotopes
Issue:662
Pagenumber:14
Source:The Cryosphere 11 (2017), pp. 2175–2188 DOI 10.5194/tc-11-2175-2017
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
Dewey Decimal Classification:9 Geschichte und Geografie / 91 Geografie, Reisen / 910 Geografie, Reisen
Peer Review:Referiert
Publication Way:Open Access
Grantor:Copernicus
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International