The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 27 of 48
Back to Result List

Laser control for coupled torsions in chiroptical switches: a combined quantum and classical dynamics approach

  • We present a novel laser pulse control for the chiroptical switch 1-(2-cis-fluoroethenyl)-2-fluoro-3,5-dibromobenzene mounted on adamantane, where the latter imitates a linker group or part of a solid surface. This molecular device offers three switching states: a true achiral "off"-state and two chiral "on"-states of opposite handedness. Due to the alignment of its chiral axis along the surface normal several defined orientations of the switch have to be considered for an efficient stereocontrol strategy. In addition to these different initial conditions, coupled torsional degrees of freedom around the chiral axis make the quest for highly stereoselective laser pulses a challenge. The necessary flexibility in pulse accomplished by employing the iterative stochastic pulse optimization method we presented recently. Still, the complexity of the system dictates a combined treatment by fast molecular dynamics and computationally intensive quantum dynamics. Although quantum effects are found to be of importance, the pulses optimized withinWe present a novel laser pulse control for the chiroptical switch 1-(2-cis-fluoroethenyl)-2-fluoro-3,5-dibromobenzene mounted on adamantane, where the latter imitates a linker group or part of a solid surface. This molecular device offers three switching states: a true achiral "off"-state and two chiral "on"-states of opposite handedness. Due to the alignment of its chiral axis along the surface normal several defined orientations of the switch have to be considered for an efficient stereocontrol strategy. In addition to these different initial conditions, coupled torsional degrees of freedom around the chiral axis make the quest for highly stereoselective laser pulses a challenge. The necessary flexibility in pulse accomplished by employing the iterative stochastic pulse optimization method we presented recently. Still, the complexity of the system dictates a combined treatment by fast molecular dynamics and computationally intensive quantum dynamics. Although quantum effects are found to be of importance, the pulses optimized within the classical treatment allow us to turn on the chirality of the switch, achieving high enantioselectivity in the quantum treatment for all orientations at the same time.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Dominik Kroener, Selina Schimka, Tillmann Klamroth
DOI:https://doi.org/10.1021/jp410342a
ISSN:1932-7447 (print)
Parent Title (English):The journal of physical chemistry : C, Nanomaterials and interfaces
Publisher:American Chemical Society
Place of publication:Washington
Document Type:Article
Language:English
Year of first Publication:2014
Year of Completion:2014
Release Date:2017/03/27
Volume:118
Issue:2
Pagenumber:10
First Page:1322
Last Page:1331
Funder:German Research Foundation, DFG [KR 2942/2, Sfb 658]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert