The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 5
Back to Result List

Plant-habitat interactions in brackish marshes

Pflanzen-Habitat Interaktionen in Tidemarschen

  • Estuarine marshes are ecosystems that are situated at the transition zone between land and water and are thus controlled by physical and biological interactions. Marsh vegetation offers important ecosystem services by filtrating solid and dissolved substances from the water and providing habitat. By buffering a large part of the arriving flow velocity, attenuating wave energy and serving as erosion control for riverbanks, tidal marshes furthermore reduce the destructive effects of storm surges and storm waves and thus contribute to ecosystem-based shore protection. However, in many estuaries, extensive embankments, artificial bank protection, river dredging and agriculture threaten tidal marshes. Global warming might entail additional risks, such as changes in water levels, an increase of the tidal amplitude and a resulting shift of the salinity zones. This can affect the dynamics of the shore and foreland vegetation, and vegetation belts can be narrowed or fragmented. Against this background, it is crucial to gain a betterEstuarine marshes are ecosystems that are situated at the transition zone between land and water and are thus controlled by physical and biological interactions. Marsh vegetation offers important ecosystem services by filtrating solid and dissolved substances from the water and providing habitat. By buffering a large part of the arriving flow velocity, attenuating wave energy and serving as erosion control for riverbanks, tidal marshes furthermore reduce the destructive effects of storm surges and storm waves and thus contribute to ecosystem-based shore protection. However, in many estuaries, extensive embankments, artificial bank protection, river dredging and agriculture threaten tidal marshes. Global warming might entail additional risks, such as changes in water levels, an increase of the tidal amplitude and a resulting shift of the salinity zones. This can affect the dynamics of the shore and foreland vegetation, and vegetation belts can be narrowed or fragmented. Against this background, it is crucial to gain a better understanding of the processes underlying the spatio temporal vegetation dynamics in brackish marshes. Furthermore, a better understanding of how plant-habitat relationships generate patterns in tidal marsh vegetation is vital to maintain ecosystem functions and assess the response of marshes to environmental change as well as the success of engineering and restoration projects. For this purpose, three research objectives were addressed within this thesis: (1) to explore the possibility of vegetation serving as self-adaptive shore protection by quantifying the reduction of current velocity in the vegetation belt and the morphologic plasticity of a brackish marsh pioneer, (2) to disentangle the roles of abiotic factors and interspecific competition on species distribution and stand characteristics in brackish marshes, and (3) to develop a mechanistic vegetation model that helps analysing the influence of habitat conditions on the spatio-temporal dynamic of tidal marsh vegetation. These aspects were investigated using a combination of field studies and statistical as well as process-based modelling. To explore the possibility of vegetation serving as self-adaptive coastal protection, in the first study, we measured current velocity with and without living vegetation, recorded ramet density and plant thickness during two growing periods at two locations in the Elbe estuary and assessed the adaptive value of a larger stem diameter of plants at locations with higher mechanical stress by biomechanical measurements. The results of this study show that under non-storm conditions, the vegetation belt of the marsh pioneer Bolboschoenus maritimus is able to buffer a large proportion of the flow velocity. We were furthermore able to show that morphological traits of plant species are adapted to hydrodynamic forces by demonstrating a positive correlation between ramet thickness and cross-shore current. In addition, our measurements revealed that thicker ramets growing at the front of the vegetation belt have a significantly higher stability than ramets inside the vegetation belt. This self-adaptive effect improves the ability of B. maritimus to grow and persist in the pioneer zone and could provide an adaptive value in habitats with high mechanical stress. In the second study, we assessed the distribution of the two marsh species and a set of stand characteristics, namely aboveground and belowground biomass, ramet density, ramet height and the percentage of flowering ramets. Furthermore, we collected information on several abiotic habitat factors to test their effect on plant growth and zonation with generalised linear models (GLMs). Our results demonstrate that flow velocity is the main factor controlling the distribution of Bolboschoenus maritimus and Phragmites australis. Additionally, inundation height and duration, as well as intraspecific competition affect distribution patterns. This study furthermore shows that cross-shore flow velocity does not only directly influence the distribution of the two marsh species, but also alters the plants’ occurrence relative to inun-dation height and duration. This suggests an effect of cross-shore flow velocity on their tolerance to inundation. The analysis of the measured stand characteristics revealed a negative effect of total flow velocity on all measured parameters of B. maritimus and thus confirmed our expectation that flow velocity is a decisive stressor which influences the growth of this species. To gain a better understanding of the processes and habitat factors influencing the spatio-temporal vegetation dynamics in brackish marshes, I built a spatially explicit, mechanistic model applying a pattern-oriented modelling approach. A sensitivity analysis of the para-meters of this dynamic habitat-macrophyte model HaMac suggests that rhizome growth is the key process for the lateral dynamics of brackish marshes. From the analysed habitat factors, P. australis patterns were mainly influenced by flow velocity. The competition with P. australis was of key importance for the belowground biomass of B. maritimus. Concerning vegetation dynamics, the model results emphasise that without the effect of flow velocity the B. maritimus vegetation belt would expand into the tidal flat at locations with present vegetation recession, suggesting that flow velocity is the main reason for vegetation recession at exposed locations. Overall, the results of this thesis demonstrate that brackish marsh vegetation considerably contributes to flow reduction under average flow conditions and can hence be a valuable component of shore-protection schemes. At the same time, the distribution, growth and expansion of tidal marsh vegetation is substantially influenced by flow. Altogether, this thesis provides a clear step forward in understanding plant-habitat interactions in tidal marshes. Future research should integrate studies of vertical marsh accretion with research on the factors that control the lateral position of marshes.show moreshow less
  • Tidemarschen sind Ökosysteme, die sich am Übergang zwischen Land und Wasser befinden und deshalb von Wechselwirkungen zwischen physikalischen und biologischen Prozessen beherrscht werden. Marschvegetation bietet wichtige Ökosystemleistungen, wie das Filtern von festen und gelösten Stoffen aus dem Wasser und die Bereitstellung von Lebensraum für Tiere. Außerdem verringern Marschen die zerstörerische Wirkung von Sturmfluten und Sturmwellen und tragen so zu einem ökosystembasierten Uferschutz bei. Doch in vielen Fluss­mündungen bedrohen umfangreiche Eindeichungen, künstlicher Uferschutz, Fluss­ver­tiefun­gen und die Landwirtschaft die Tidemarschen. Die globale Erwärmung könnte zusätz­liche Risiken, wie etwa Änderungen der Wasserstände, eine weitere Erhöhung der Gezeiten­amplitude und eine daraus resultierende Verschiebung der Salinitätszonen mit sich bringen. Dies kann die Dynamik der Ufer- und Vorlandvegetation beeinflussen und die Vegetations­gürtel verschmälern oder fragmentieren. Vor diesem Hintergrund ist es entscheidend, einTidemarschen sind Ökosysteme, die sich am Übergang zwischen Land und Wasser befinden und deshalb von Wechselwirkungen zwischen physikalischen und biologischen Prozessen beherrscht werden. Marschvegetation bietet wichtige Ökosystemleistungen, wie das Filtern von festen und gelösten Stoffen aus dem Wasser und die Bereitstellung von Lebensraum für Tiere. Außerdem verringern Marschen die zerstörerische Wirkung von Sturmfluten und Sturmwellen und tragen so zu einem ökosystembasierten Uferschutz bei. Doch in vielen Fluss­mündungen bedrohen umfangreiche Eindeichungen, künstlicher Uferschutz, Fluss­ver­tiefun­gen und die Landwirtschaft die Tidemarschen. Die globale Erwärmung könnte zusätz­liche Risiken, wie etwa Änderungen der Wasserstände, eine weitere Erhöhung der Gezeiten­amplitude und eine daraus resultierende Verschiebung der Salinitätszonen mit sich bringen. Dies kann die Dynamik der Ufer- und Vorlandvegetation beeinflussen und die Vegetations­gürtel verschmälern oder fragmentieren. Vor diesem Hintergrund ist es entscheidend, ein besseres Verständnis der Prozesse zu erlangen, die der raum-zeitlichen Vegetationsdynamik in Tidemarschen zugrunde liegen. Darüber hinaus ist sind zusätzliche Erkenntnisse darüber, wie Pflanzen-Umwelt-Beziehungen die Muster in Marschen beeinflussen, von entscheidender Bedeutung um Ökosystemfunktionen aufrechtzuerhalten und die Reaktion von Marschen auf Umweltveränderungen sowie den Erfolg von Ingenieur- und Restaurierungsprojekten zu bewerten. Zu diesem Zweck wurden in dieser Arbeit drei Forschungsziele gesetzt: (1) das Erforschen der Möglichkeit der Vegetation als selbstanpassender Uferschutz zu dienen, (2) das Ermitteln der Rolle verschiedener Faktoren auf die Artenverbreitung und verschiedene Pflanzen­merk­male in Tidemarschen und (3) die Entwicklung eines prozess-basierten Vegetations­modells, das die Analyse des Einflusses von Lebensraumbedingungen auf die raum-zeitliche Dynamik der Marschvegetation unterstützt. Diese Aspekte wurden anhand einer Kombination von Feld­studien und statistischer sowie prozessbasierter Modellierung untersucht. Ins­gesamt zeigen die Ergebnisse dieser Arbeit, dass die Marschvegetation erheblich zur Strömungsreduktion unter durchschnittlichen Strömungsverhältnissen beiträgt und somit ein wertvoller Bestandteil von Uferschutzsystemen sein kann. Darüber hinaus konnte Strömung als Hauptfaktor für die Verbreitung, das Wachstum und die Expansion von Marschvegetation identifiziert werden. Diese Arbeit trägt maßgeblich zur Verbesserung des Verständnisses von Pflanzen-Habitat Interaktionen in Tidemarschen bei. Zukünftige Forschung sollte Studien des vertikalen Marschwachstums mit der Analyse der Faktoren, die die laterale Position der Marschen kontrollieren verknüpfen.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Jana CarusORCiDGND
URN:urn:nbn:de:kobv:517-opus4-404966
Subtitle (English):coping with, adapting to and modifying the environment
Supervisor(s):Boris Schröder-Esselbach
Publication type:Doctoral Thesis
Language:English
Publication year:2017
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2017/10/20
Release date:2018/01/05
Tag:Pflanzen-Habitat Interaktionen; Ästuar; ökologische Modellierung
ecological modelling; estuary; plant-habitat interactions
Number of pages:VII, 103
RVK - Regensburg classification:RB 10525, WI 5460
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
MSC classification:92-XX BIOLOGY AND OTHER NATURAL SCIENCES
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.