The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 27 of 38
Back to Result List

Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years

  • Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on theBackground Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Steffen MuellerGND, Anja CarlsohnORCiDGND, Juliane MuellerORCiDGND, Heiner BaurORCiDGND, Frank MayerORCiDGND
DOI:https://doi.org/10.1371/journal.pone.0149924
ISSN:1932-6203
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/26914211
Title of parent work (English):PLoS one
Publisher:PLoS
Place of publishing:San Fransisco
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Volume:11
Number of pages:12
First page:1710
Last Page:1717
Funding institution:Federation of the German Footwear Industry (HDS, Offenbach, Germany); RICOSTA Schuhfabriken GmbH (Donaueschingen, Germany); University of Potsdam (Potsdam, Germany); Deutsche Forschungsgemeinschaft; University of Potsdam
Peer review:Referiert
Institution name at the time of the publication:Humanwissenschaftliche Fakultät / Exzellenzbereich Kognitionswissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.