• search hit 7 of 18
Back to Result List

Evolution of DNA-Binding Sites of a Floral Master Regulatory Transcription Factor

  • Flower development is controlled by the action of key regulatory transcription factors of the MADS-domain family. The function of these factors appears to be highly conserved among species based on mutant phenotypes. However, the conservation of their downstream processes is much less well understood, mostly because the evolutionary turnover and variation of their DNA-binding sites (BSs) among plant species have not yet been experimentally determined. Here, we performed comparative ChIP (chromatin immunoprecipitation)-seq experiments of the MADS-domain transcription factor SEPALLATA3 (SEP3) in two closely related Arabidopsis species: Arabidopsis thaliana and A. lyrata which have very similar floral organ morphology. We found that BS conservation is associated with DNA sequence conservation, the presence of the CArG-box BS motif and on the relative position of the BS to its potential target gene. Differences in genome size and structure can explain that SEP3 BSs in A. lyrata can be located more distantly to their potential target genesFlower development is controlled by the action of key regulatory transcription factors of the MADS-domain family. The function of these factors appears to be highly conserved among species based on mutant phenotypes. However, the conservation of their downstream processes is much less well understood, mostly because the evolutionary turnover and variation of their DNA-binding sites (BSs) among plant species have not yet been experimentally determined. Here, we performed comparative ChIP (chromatin immunoprecipitation)-seq experiments of the MADS-domain transcription factor SEPALLATA3 (SEP3) in two closely related Arabidopsis species: Arabidopsis thaliana and A. lyrata which have very similar floral organ morphology. We found that BS conservation is associated with DNA sequence conservation, the presence of the CArG-box BS motif and on the relative position of the BS to its potential target gene. Differences in genome size and structure can explain that SEP3 BSs in A. lyrata can be located more distantly to their potential target genes than their counterparts in A. thaliana. In A. lyrata, we identified transposition as a mechanism to generate novel SEP3 binding locations in the genome. Comparative gene expression analysis shows that the loss/gain of BSs is associated with a change in gene expression. In summary, this study investigates the evolutionary dynamics of DNA BSs of a floral key-regulatory transcription factor and explores factors affecting this phenomenon.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jose M. Muino, Suzanne de Bruijn, Alice Pajoro, Koen GeutenORCiD, Martin Vingron, Gerco C. Angenent, Kerstin KaufmannORCiD
DOI:https://doi.org/10.1093/molbev/msv210
ISSN:0737-4038
ISSN:1537-1719
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/26429922
Title of parent work (English):Molecular biology and evolution
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:MADS-domain transcription factor; cis-regulatory evolution; plant development
Volume:33
Number of pages:16
First page:185
Last Page:200
Funding institution:Netherlands Organisation for Scientific Research (NWO) Experimental Plant Sciences graduate school "master talent" fellowship; [GSE63463]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.