• Treffer 5 von 6
Zurück zur Trefferliste

pH-dependent polyampholyte SDS interactions

  • Aqueous solutions of sodium dodecylsulfate (SDS) and poly(N,N'-diallyl-N,N'-dimethyl-alt-maleamic carboxylate) (PalH), a synthetic pH-tuneable polyelectrolyte (PEL), have been investigated by various techniques at different pH-values in absence and presence of NaCl. Potentiometric measurements using a surfactant-selective electrode indicate a quite complex interaction mechanism, which can be subdivided into different regions, where non-cooperative, electrostatic and cooperative hydrophobic interactions are of relevance. It was concluded, that in dependence on pH, conformational changes are responsible for the different interaction behavior in the NaCl-free system. Isothermal titration calorimetry (ITC) suggests that early stage hydrophobic binding is an exothermic process followed by electrostatic interactions, which are endothermic in nature and entropy driven. After NaCl addition the interaction mechanism becomes independent of pH due to a screening of (i) attractive interactions between the surfactant head groups and oppositelyAqueous solutions of sodium dodecylsulfate (SDS) and poly(N,N'-diallyl-N,N'-dimethyl-alt-maleamic carboxylate) (PalH), a synthetic pH-tuneable polyelectrolyte (PEL), have been investigated by various techniques at different pH-values in absence and presence of NaCl. Potentiometric measurements using a surfactant-selective electrode indicate a quite complex interaction mechanism, which can be subdivided into different regions, where non-cooperative, electrostatic and cooperative hydrophobic interactions are of relevance. It was concluded, that in dependence on pH, conformational changes are responsible for the different interaction behavior in the NaCl-free system. Isothermal titration calorimetry (ITC) suggests that early stage hydrophobic binding is an exothermic process followed by electrostatic interactions, which are endothermic in nature and entropy driven. After NaCl addition the interaction mechanism becomes independent of pH due to a screening of (i) attractive interactions between the surfactant head groups and oppositely charged binding sites and (ii) repulsive forces between the surfactant head groups. Furthermore, the ITC investigations have revealed that after salt-addition surfactant micelles interact with the polymer instead of separated SDS molecules due to a depression of the CMC.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Mabya Fechner, Sabine KosmellaGND, Joachim KoetzORCiDGND
URL:http://www.sciencedirect.com/science/journal/00219797
DOI:https://doi.org/10.1016/j.jcis.2010.01.092
ISSN:0021-9797
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2010
Erscheinungsjahr:2010
Datum der Freischaltung:25.03.2017
Quelle:Journal of colloid and interface science. - ISSN 0021-9797. - 345 (2010), 2, S. 384 - 391
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.