• Treffer 2 von 8
Zurück zur Trefferliste

The influence of polyelectrolyte charge density on the formation of multilayers of strong polyelectrolytes at low ionic strength

  • The influence of the charge density of polyelectrolytes on the growth of polyelectrolyte multilayers via layer- by-layer self-assembly from pure aqueous solutions was studied. Multilayers were built from strong polyanions, namely poly(styrenesulfonate) and an exfoliated synthetic hectorite, and cationic copolymers of diallyldimethylammonium chloride (DADMAC) with N-methyl-N-vinylformamide (NMVF) for which the composition and thus the charge density was varied systematically. The analysis of the system {cationic copolymer/poly(styrenesulfonate)} reveals that a critical linear charge density Ïc of 0.036 elementary charge/Å of contour length is necessary to obtain stable multilayer growth in pure water. Above Ïc, the increment of thickness/deposition cycle varies with the linear charge density of the cationic copolymers, in good agreement with current theories of polyelectrolyte solutions. As linear charge density increases, the system passes successively through a charge-dependent ?Debye-Hu ckel? regime and then through aThe influence of the charge density of polyelectrolytes on the growth of polyelectrolyte multilayers via layer- by-layer self-assembly from pure aqueous solutions was studied. Multilayers were built from strong polyanions, namely poly(styrenesulfonate) and an exfoliated synthetic hectorite, and cationic copolymers of diallyldimethylammonium chloride (DADMAC) with N-methyl-N-vinylformamide (NMVF) for which the composition and thus the charge density was varied systematically. The analysis of the system {cationic copolymer/poly(styrenesulfonate)} reveals that a critical linear charge density Ïc of 0.036 elementary charge/Å of contour length is necessary to obtain stable multilayer growth in pure water. Above Ïc, the increment of thickness/deposition cycle varies with the linear charge density of the cationic copolymers, in good agreement with current theories of polyelectrolyte solutions. As linear charge density increases, the system passes successively through a charge-dependent ?Debye-Hu ckel? regime and then through a chargeindependent ?strong-screening? regime where counterion condensation dominates the behavior. Analogous results were obtained for the variation of the basal spacing of internally structured hybrid multilayers {cationic copolymer/hectorite}. However, by contrast with the first system, no critical linear charge density was found for the hybrid system. This is explained by additional, nonelectrostatic interactions between the clay platelets and the formamide fragment.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Karine Glinel, Alain Moussa, Alain M. Jonas, André LaschewskyORCiDGND
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2002
Erscheinungsjahr:2002
Datum der Freischaltung:24.03.2017
Quelle:Langmuir. - 18 (2002), S. 1408 - 1412
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.