• search hit 1 of 5
Back to Result List

Improving measurement and modelling approaches of the closed chamber method to better assess dynamics and drivers of carbon based greenhouse gas emissions

  • The trace gases CO2 and CH4 pertain to the most relevant greenhouse gases and are important exchange fluxes of the global carbon (C) cycle. Their atmospheric quantity increased significantly as a result of the intensification of anthropogenic activities, such as especially land-use and land-use change, since the mid of the 18th century. To mitigate global climate change and ensure food security, land-use systems need to be developed, which favor reduced trace gas emissions and a sustainable soil carbon management. This requires the accurate and precise quantification of the influence of land-use and land-use change on CO2 and CH4 emissions. A common method to determine the trace gas dynamics and C sink or source function of a particular ecosystem is the closed chamber method. This method is often used assuming that accuracy and precision are high enough to determine differences in C gas emissions for e.g., treatment comparisons or different ecosystem components. However, the broad range of different chamber designs, relatedThe trace gases CO2 and CH4 pertain to the most relevant greenhouse gases and are important exchange fluxes of the global carbon (C) cycle. Their atmospheric quantity increased significantly as a result of the intensification of anthropogenic activities, such as especially land-use and land-use change, since the mid of the 18th century. To mitigate global climate change and ensure food security, land-use systems need to be developed, which favor reduced trace gas emissions and a sustainable soil carbon management. This requires the accurate and precise quantification of the influence of land-use and land-use change on CO2 and CH4 emissions. A common method to determine the trace gas dynamics and C sink or source function of a particular ecosystem is the closed chamber method. This method is often used assuming that accuracy and precision are high enough to determine differences in C gas emissions for e.g., treatment comparisons or different ecosystem components. However, the broad range of different chamber designs, related operational procedures and data-processing strategies which are described in the scientific literature contribute to the overall uncertainty of closed chamber-based emission estimates. Hence, the outcomes of meta-analyses are limited, since these methodical differences hamper the comparability between studies. Thus, a standardization of closed chamber data acquisition and processing is much-needed. Within this thesis, a set of case studies were performed to: (I) develop standardized routines for an unbiased data acquisition and processing, with the aim of providing traceable, reproducible and comparable closed chamber based C emission estimates; (II) validate those routines by comparing C emissions derived using closed chambers with independent C emission estimates; and (III) reveal processes driving the spatio-temporal dynamics of C emissions by developing (data processing based) flux separation approaches. The case studies showed: (I) the importance to test chamber designs under field conditions for an appropriate sealing integrity and to ensure an unbiased flux measurement. Compared to the sealing integrity, the use of a pressure vent and fan was of minor importance, affecting mainly measurement precision; (II) that the developed standardized data processing routines proved to be a powerful and flexible tool to estimate C gas emissions and that this tool can be successfully applied on a broad range of flux data sets from very different ecosystem; (III) that automatic chamber measurements display temporal dynamics of CO2 and CH4 fluxes very well and most importantly, that they accurately detect small-scale spatial differences in the development of soil C when validated against repeated soil inventories; and (IV) that a simple algorithm to separate CH4 fluxes into ebullition and diffusion improves the identification of environmental drivers, which allows for an accurate gap-filling of measured CH4 fluxes. Overall, the proposed standardized data acquisition and processing routines strongly improved the detection accuracy and precision of source/sink patterns of gaseous C emissions. Hence, future studies, which consider the recommended improvements, will deliver valuable new data and insights to broaden our understanding of spatio-temporal C gas dynamics, their particular environmental drivers and underlying processes.show moreshow less
  • Die Spurengase CO2 und CH4 gehören zu den wichtigsten atmosphärischen Treibhausgasen und sind zugleich wichtige Austauschflüsse im globalen Kohlenstoff-(C)-Kreislauf. Als Ergebnis zunehmender anthropogener Aktivitäten insbesondere auch im Bereich der Landnutzung und des Landnutzungswandel stiegen seit Mitte des 18 Jahrhunderts die atmosphärischen CO2 und CH4 Konzentrationen deutlich an. Um die zu erwartenden Auswirkungen des globalen Klimawandels abzuschwächen aber auch um die weltweite Ernährungssicherheit zu gewährleisten, bedarf es der Entwicklung neuer Landnutzungssysteme welche sich durch verminderte Treibhausgasemissionen und ein nachhaltiges Management der Bodenkohlenstoffvorrate auszeichnen. Dies erfordert die akkurate und präzise Quantifizierung des Einflusses von Landnutzung und Landnutzungswandel auf die CO2 und CH4 Emissionen. Eine gängige Methode zur Bestimmung von Spurengasemissionen und darauf aufbauend der C Senken bzw. Quellenfunktion verschiedenster Ökosysteme stellen Haubenmessungen dar. UnterschiedlicheDie Spurengase CO2 und CH4 gehören zu den wichtigsten atmosphärischen Treibhausgasen und sind zugleich wichtige Austauschflüsse im globalen Kohlenstoff-(C)-Kreislauf. Als Ergebnis zunehmender anthropogener Aktivitäten insbesondere auch im Bereich der Landnutzung und des Landnutzungswandel stiegen seit Mitte des 18 Jahrhunderts die atmosphärischen CO2 und CH4 Konzentrationen deutlich an. Um die zu erwartenden Auswirkungen des globalen Klimawandels abzuschwächen aber auch um die weltweite Ernährungssicherheit zu gewährleisten, bedarf es der Entwicklung neuer Landnutzungssysteme welche sich durch verminderte Treibhausgasemissionen und ein nachhaltiges Management der Bodenkohlenstoffvorrate auszeichnen. Dies erfordert die akkurate und präzise Quantifizierung des Einflusses von Landnutzung und Landnutzungswandel auf die CO2 und CH4 Emissionen. Eine gängige Methode zur Bestimmung von Spurengasemissionen und darauf aufbauend der C Senken bzw. Quellenfunktion verschiedenster Ökosysteme stellen Haubenmessungen dar. Unterschiedliche Haubendesigns, Messprozeduren und Strategien bei der Datenaufbereitung führen jedoch mitunter zu erheblichen Unsicherheiten bei den gemessenen C Emissionen. Dies kann die Aussagekraft von Metastudien maßgeblich beeinträchtigen, da die Vergleichbarkeit mittels geschlossener Hauben durchgeführter Untersuchungen nicht gewährleistet werden kann. Daher ist eine Standardisierung der Erfassung und Auswertung von Haubenmessungen dringend erforderlich. Im Rahmen dieser Arbeit wurden deshalb eine Reihe von Fallstudien durchgeführt um: (I) standardisierte Routinen zu entwickeln welche eine fehlerfreiere Datenerfassung und Bearbeitung von Haubenmessungen erlauben und so nachvollziehbare, reproduzierbare und vergleichbare C Emissionen liefern; (II) erarbeitete Routinen zu validieren indem auf geschlossenen Haubenmessungen basierende C Emissionen mit unabhängigen Daten verglichen werden; und (III) mittels entwickelter Separationsverfahren Teilflüsse präzise zu quantifizieren um Beziehungen zwischen CO2 und CH4 Flüssen und ihren Treibern besser analysieren zu können. Die durchgeführten Fallstudien zeigen: (I) die Notwendigkeit eingesetzte Hauben unter möglichst realistischen (Feld)-Bedingungen hinsichtlich ihrer Dichtigkeit (insbesondere an der Abdichtung zwischen Rahmen und Haube) zu überprüfen, da nur so fehlerfreie Messungen sichergestellt werden können; (II) das die entwickelten Routinen zur standardisierten Datenbearbeitung ein geeignetes flexibles Werkzeug darstellen um eine verlässliche Abschatzung gasförmige C Emissionen vorzunehmen; (III) das die zeitliche Dynamik von CO2 und CH4 Flüssen sowie kleinräumige Unterschiede in der Entwicklung von Bodenkohlenstoffvorraten gut mittels automatischer Haubenmesssysteme erfasst werden können (Validierung der Ergebnisse mittels wiederholter Bodeninventarisierung); und (IV) das ein einfacher Algorithmus zur Separation von CH4 in seine Flusskompartimente (blasenförmiger Massenfluss vs. Diffusion) die Identifizierung von Treibern verbessert und so ein akkurateres Füllen von Messlücken ermöglicht. Die in der Arbeit vorgestellten Routinen zur standardisierten Datenerfassung und Bearbeitung finden gegenwärtig national wie international Anwendung und helfen somit bei der Generierung vergleichbarer, akkurater und präziser Abschätzungen von standort-/ökosystemspezifischen C Emissionen.show moreshow less
  • Следовые газы CO2 и CH4 относятся к наиболее значимым парниковым газам и являются важнейшими компонентами глобального углеродного (С) цикла. С середины XVIII столетия их атмосферная концентрация значительно увеличилась, в результате возросшей антропогенной деятельности, в особенности за счет такой сферы как землепользование и изменение землепользования. С целью смягчения последствий глобального изменения климата и обеспечения продовольственной безопасности, необходима разработка систем землепользования, которые будет способствовать сокращению эмиссии следовых газов и обеспечат устойчивое управление углеродными запасами почв. В свою очередь, это требует проведения аккуратной и точной количественной оценки воздействия землепользования и изменения землепользования на эмиссии CO2 и CH4. Стандартным способом для оценки динамики следовых газов и определения функции накопления или потери углерода экосистемой является метод закрытых камер. Данный метод часто используется с учетом предположения, что аккуратность и точность полученныхСледовые газы CO2 и CH4 относятся к наиболее значимым парниковым газам и являются важнейшими компонентами глобального углеродного (С) цикла. С середины XVIII столетия их атмосферная концентрация значительно увеличилась, в результате возросшей антропогенной деятельности, в особенности за счет такой сферы как землепользование и изменение землепользования. С целью смягчения последствий глобального изменения климата и обеспечения продовольственной безопасности, необходима разработка систем землепользования, которые будет способствовать сокращению эмиссии следовых газов и обеспечат устойчивое управление углеродными запасами почв. В свою очередь, это требует проведения аккуратной и точной количественной оценки воздействия землепользования и изменения землепользования на эмиссии CO2 и CH4. Стандартным способом для оценки динамики следовых газов и определения функции накопления или потери углерода экосистемой является метод закрытых камер. Данный метод часто используется с учетом предположения, что аккуратность и точность полученных результатов достаточно высоки, чтобы оценить разность между потоками углеродсодержащих газов. Например, при сравнении способов воздействия на экосистему либо для оценки углеродных потоков от ее компонентов. В научной литературе описано множество различных вариантов конструкций закрытых камер, связанных с ними операционных процедур и стратегий обработки данных. Это широкое разнообразие вносит свой вклад в общую неопределенность при оценке эмиссии парниковых газов методом закрытых камер. В результате, полученные на основе мета-анализа выводы обладают определенными ограничениями, т.к. методологические различия между разными исследованиями затрудняют сравнение их результатов. В связи с этим, необходимо проведение стандартизации сбора и обработки данных для методики закрытых камер. В рамках данных тезисов, был выполнен ряд тематических исследований с целью:(1) разработать для методики закрытых камер стандартизированные процедуры несмещенного сбора и обработки данных, которые позволят получить явно отслеживаемые, воспроизводимые и сопоставимые оценки углеродных потоков; (2) провести валидацию этих процедур, путем сравнения оценок потоков углерода, полученных методом закрытых камер с результатами оценки других независимых методов; (3) разработать, на основе анализа данных, способы для разделения углеродных потоков и установить процессы, регулирующие их пространственно-временную динамику. Результаты тематических исследований показали: (1) Важно проводить испытания конструкции камер на герметичность в полевых условиях и удостовериться, что измерения потоков углерода несмещенные. В сравнении с влиянием герметичности камеры, использование клапанов для выравнивания давления и вентиляторов имело несущественное значение и влияло только на точность измерений; (2) Было подтверждено, что разработанные стандартизированные методы обработки данных являются мощным и гибким инструментом оценки эмиссии углерода. На сегодняшний день эти методы успешно применяются на широком спектре разнообразных наборов данных углеродных потоков для различных типов экосистем; (3) Измерения, выполненные автоматическими закрытыми камерами, отчетливо демонстрируют временную динамику потоков CO2 и CH4 и, что наиболее важно, они хорошо выявляют мелкомасштабные пространственные различия в накоплении почвенного углерода, что было подтверждено с помощью повторяемой инвентаризации почвенных запасов углерода; (4) Простой алгоритм разделения эмиссии CH4 на потоки выбросов в виде диффузии газа и выделения в виде пузырей улучшает идентификацию экологических факторов, которые их регулируют, что позволяет более точно оценить эмиссии CH4 в периоды между измерениями. В целом предложенные стандартизированные методы сбора и обработки данных значительно увеличивают точность моделей выделения-поглощения газообразных углеродных эмиссий. Таким образом, будущие исследования, проведенные с учетом рекомендуемых усовершенствований, позволят получить новые ценные данные и гипотезы для расширения нашего понимания пространственно-временной динамики потоков углеродсодержащих газов, экологических факторов их регулирования и лежащих в их основе процессов.show moreshow less
  • Le dioxyde de carbone (CO2) et le méthane (CH4) font partie des gaz à effet de serre les plus importants et sont également des éléments majeurs du cycle global du carbone. Depuis le milieu du XVIIIe siècle, leur quantité dans l’atmosphère a considérablement augmenté en raison de l'intensification des activités anthropiques, notamment l'exploitation des terres et la modification de l'utilisation de ces dernières. Afin d’atténuer les effets du changement climatique et d’assurer la sécurité alimentaire, il faut mettre au point des systèmes d’utilisation des terres qui favorisent la réduction des émissions de gaz à effet de serre ainsi qu’une gestion durable des stocks de carbone dans les sols. Cela exige une quantification exacte et précise de l'influence de l'utilisation des terres et de la modification de l'utilisation des sols sur les émissions de CO2 et de CH4. La méthode à chambre fermée est une méthode courante pour déterminer l’évolution des gaz présents à faible concentration atmosphérique et du puits de carbone, ou pour analyserLe dioxyde de carbone (CO2) et le méthane (CH4) font partie des gaz à effet de serre les plus importants et sont également des éléments majeurs du cycle global du carbone. Depuis le milieu du XVIIIe siècle, leur quantité dans l’atmosphère a considérablement augmenté en raison de l'intensification des activités anthropiques, notamment l'exploitation des terres et la modification de l'utilisation de ces dernières. Afin d’atténuer les effets du changement climatique et d’assurer la sécurité alimentaire, il faut mettre au point des systèmes d’utilisation des terres qui favorisent la réduction des émissions de gaz à effet de serre ainsi qu’une gestion durable des stocks de carbone dans les sols. Cela exige une quantification exacte et précise de l'influence de l'utilisation des terres et de la modification de l'utilisation des sols sur les émissions de CO2 et de CH4. La méthode à chambre fermée est une méthode courante pour déterminer l’évolution des gaz présents à faible concentration atmosphérique et du puits de carbone, ou pour analyser la fonction primaire d'un écosystème singulier. Cette méthode est souvent utilisée en supposant que l’exactitude et la précision sont suffisamment élevées pour déterminer les différences dans les émissions de gaz à effet de serre, par exemple pour comparer les traitements ou les différentes composantes de l’écosystème. Toutefois, la vaste gamme de conceptions de chambres différentes, les procédures de mesure et les stratégies de traitement des données décrites dans la documentation scientifique contribuent à l’incertitude générale quant à l’analyse des émissions récoltées en chambre fermée. Par conséquent, les résultats des méta-analyses sont limités, car ces différences méthodologiques entravent la comparabilité des études. La standardisation de l’acquisition et du traitement des données en chambre fermée est donc indispensable. Dans le cadre de cette thèse, une série d'études de cas ont été réalisées pour: (I) élaborer des routines standardisées pour l'acquisition et le traitement de données impartiales, dans le but de fournir des estimations des émissions de carbone en chambre fermée traçables, reproductibles et comparables; (II) valider ces routines en comparant les émissions de carbone obtenues par la méthode des chambres fermées avec des estimations indépendantes des émissions de carbone; et (III) révéler les processus qui déterminent la dynamique spatio-temporelle des émissions de carbone en développant un processus de traitement de données basé sur l’approche de la séparation des flux. Les études de cas montrent: (I) l'importance de tester la conception des chambres dans des conditions de terrain pour une étanchéité appropriée et pour assurer une mesure impartiale des flux. Comparé à l'intégrité de l'étanchéité, l'utilisation d'une soupape de compensation de pression et d'un ventilateur était d'une importance mineure, affectant principalement la précision des mesures; (II) que les routines de traitement des données standardisées développées se sont avérées être un outil puissant et flexible pour estimer les émissions de carbone. L'outil est maintenant appliqué avec succès sur un large éventail de séries de données de flux provenant d'écosystèmes très différents; (III) que les mesures faites à l’aide de chambres automatiques montrent très bien la dynamique temporelle des flux CO2 et de CH4 et, surtout, qu'elles détectent avec précision les différences spatiales à petite échelle dans le développement des réserves de carbone dans le sol lorsqu'elles sont validées par des inventaires périodiques du sol; et (IV) qu’un algorithme simple pour séparer les flux de CH4 en ébullition et en diffusion améliore l'identification de facteurs environnementaux, ce qui permet de combler avec précision les données manquantes des flux de CH4 mesurés. Dans l'ensemble, les routines standardisées proposées pour l'acquisition et le traitement des données ont grandement amélioré l'exactitude de la détection des profils source/évier des émissions de carbone gazeux. Par conséquent, les études futures, qui tiennent compte des améliorations recommandées, fourniront de nouvelles données et de nouvelles perspectives précieuses pour élargir notre compréhension de la dynamique spatio-temporelle du gaz carbone, de ses moteurs environnementaux spécifiques et des processus sous-jacents.show moreshow less
  • Los gases traza CO2 y CH4 pertenecen a los gases de efecto invernadero más importantes del ciclo global del carbono (C). Su concentración en la atmósfera se ha incrementado significativamente desde mediados del siglo XVIII como resultado de la intensificación de las actividades antropogénicas, como el uso del suelo y el cambio en los usos de la tierra. Para mitigar el cambio climático global y garantizar la seguridad alimentaria es necesario desarrollar sistemas de uso del suelo que favorezcan la reducción de emisiones de gases de efecto invernadero y una gestión sostenible del carbono en el suelo. Esto requiere un cálculo exacto y preciso de la influencia del uso del suelo y de los cambios en el uso del suelo en las emisiones de CO2 y CH4. Un método común para determinar las dinámicas del gas traza y la función de fuente o sumidero de C de un ecosistema es el método de las cámaras cerradas. Este método se utiliza comúnmente asumiendo que la exactitud y precisión son lo suficientemente elevadas para determinar las diferencias en laLos gases traza CO2 y CH4 pertenecen a los gases de efecto invernadero más importantes del ciclo global del carbono (C). Su concentración en la atmósfera se ha incrementado significativamente desde mediados del siglo XVIII como resultado de la intensificación de las actividades antropogénicas, como el uso del suelo y el cambio en los usos de la tierra. Para mitigar el cambio climático global y garantizar la seguridad alimentaria es necesario desarrollar sistemas de uso del suelo que favorezcan la reducción de emisiones de gases de efecto invernadero y una gestión sostenible del carbono en el suelo. Esto requiere un cálculo exacto y preciso de la influencia del uso del suelo y de los cambios en el uso del suelo en las emisiones de CO2 y CH4. Un método común para determinar las dinámicas del gas traza y la función de fuente o sumidero de C de un ecosistema es el método de las cámaras cerradas. Este método se utiliza comúnmente asumiendo que la exactitud y precisión son lo suficientemente elevadas para determinar las diferencias en la emisiones de gases C, por ejemplo, comparaciones de tratamientos o de los diferentes componentes del ecosistema. Sin embargo, la amplia gama de diseños de cámaras, los procedimientos operativos relacionados y las estrategias de procesamiento de datos descritas en la literatura científica contribuyen a la incertidumbre general de las estimaciones de emisiones basadas en cámaras cerradas. Además, los resultados de los metanálisis son limitados, ya que estas diferencias metodológicas dificultan la comparabilidad entre los estudios. Por lo tanto, la estandarización en la obtención y procesamiento de datos en el método de la cámara cerrada es muy necesaria. En esta tesis se desarrollan un conjunto de casos de estudio para: (I) Desarrollar rutinas estandarizadas para una obtención y procesamiento de datos imparcial, con el objetivo de proporcionar estimaciones de emisiones de C basadas en cámaras cerradas trazables, reproducibles y comparables; (II) Validar esas rutinas comparando las emisiones de C derivadas del método de las cámaras cerradas con estimaciones independientes de emisiones de C; y (III) revelar procesos que impulsan la dinámica espacio temporal de las emisiones de C, a través del desarrollo de un proceso de tratamiento de datos basado en el enfoque de la separación de flujos. Los casos de estudio muestran: (I) La importancia de someter a prueba el diseño de las cámaras a las condiciones de campo para una apropiada integridad del sellado y para garantizar una medición de flujo imparcial. Comparado con la integridad del sellado, el uso de la ventilación a presión y del ventilador resultó de menor importancia, afectando principalmente a la precisión de las mediciones. (II) que las rutinas estandarizadas desarrolladas para el procesamiento de datos demostraron ser una herramienta poderosa y flexible para estimar las emisiones de gases de C. La herramienta ahora se aplica con éxito en una amplia gama de conjuntos de datos de flujo de ecosistemas muy diferentes; (III) que las mediciones con cámaras automáticas muestran claramente la dinámica temporal de las emisiones de CO2 y lo más importante, que detectan con precisión diferencias espaciales a pequeña escala en el desarrollo del C en el suelo cuando se validan con inventarios periódicos del suelo ; y (IV) que un simple algoritmo para separar flujos de CH4 entre ebullición y difusión mejora la identificación de los impulsores ambientales, lo cual permite un procedimiento más exacto para el relleno del vacío de datos de las mediciones de los flujos de CH4. En términos generales puede decirse que los algoritmos de obtención y procesamiento de datos estandarizados propuestos mejoraron en gran medida la precisión de detección de los patrones fuente / sumidero de emisiones de C gaseoso. Por lo tanto, los futuros estudios, que consideren las mejoras recomendadas, ofrecerán nuevos datos y conocimientos útiles para ampliar nuestra comprensión de la dinámica espacio-temporal del C de los gases, sus impulsores ambientales específicos y los procesos subyacentes.show moreshow less

Download full text files

Export metadata

Metadaten
Author:Mathias HoffmannORCiD
URN:urn:nbn:de:kobv:517-opus4-421302
Title Additional (German):Verbesserung von Mess- und Modellierungsansätzen der geschlossenen Haubenmessmethode zur besseren Erfassung von raumzeitlichen Veränderungen und potentiellen Treibern kohlenstoffbasierter Treibhausgasemissionen
Referee:Georg WohlfahrtORCiDGND
Advisor:Michael Sommer, Jürgen Augustin
Document Type:Doctoral Thesis
Language:English
Date of first Publication:2019/01/08
Year of Completion:2019
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2018/10/22
Release Date:2019/01/08
Tag:Kohlenstoffdioxid; Methan; Treibhausgase; geschlossene Haubenmessmethode
carbon dioxide; closed chamber method; greenhouse gases; methane
Pagenumber:xx, 204, xxix
Organizational units:Extern
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Nicht referiert
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht