• search hit 1 of 1
Back to Result List

Influence of dietary fat intake on the endocannabinoid system in lean and obese subjects

  • Objective: Endocannabinoid system (ECS) activation promotes obesity-associated metabolic disease. Increased dietary fat intake increases blood endocannabinoids and alters adipose and skeletal muscle ECS gene expression in human. Methods: Two weeks isocaloric low- (LFD) and high-fat diets (HFD) in obese (n = 12) and normal- weight (n = 17) subjects in a randomized cross-over study were compared. Blood endocannabinoids were measured in the fasting condition and after food intake using mass spectrometry. Adipose and skeletal muscle gene expression was determined using real-time RT-PCR. Results: Baseline fasting plasma endocannabinoids were similar with both diets. Anandamide decreased similarly with high- or low-fat test meals in both groups. Baseline arachidonoylglycerol plasma concentrations were similar between groups and diets, and unresponsive to eating. In subcutaneous adipose tissue, DAGL-alpha mRNA was upregulated and fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) mRNAs were down-regulated in obeseObjective: Endocannabinoid system (ECS) activation promotes obesity-associated metabolic disease. Increased dietary fat intake increases blood endocannabinoids and alters adipose and skeletal muscle ECS gene expression in human. Methods: Two weeks isocaloric low- (LFD) and high-fat diets (HFD) in obese (n = 12) and normal- weight (n = 17) subjects in a randomized cross-over study were compared. Blood endocannabinoids were measured in the fasting condition and after food intake using mass spectrometry. Adipose and skeletal muscle gene expression was determined using real-time RT-PCR. Results: Baseline fasting plasma endocannabinoids were similar with both diets. Anandamide decreased similarly with high- or low-fat test meals in both groups. Baseline arachidonoylglycerol plasma concentrations were similar between groups and diets, and unresponsive to eating. In subcutaneous adipose tissue, DAGL-alpha mRNA was upregulated and fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) mRNAs were down-regulated in obese subjects, but the diets had no influence. In contrast, the HFD produced pronounced reductions in skeletal muscle CB1-R and MAGL mRNA expression, whereas obesity did not affect muscular gene expression. Conclusions: Weight-neutral changes in dietary fat intake cannot explain excessive endocannabinoid availability in human obesity. Obesity and dietary fat intake affect ECS gene expression in a tissue-specific manner.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Stefan Engeli, Anne-Christin Lehmann, Jana Kaminski, Verena Haas, Urgen Janke, Jürgen Janke, Alexander A. Zoerner, Friedrich C. Luft, Dimitrios Tsikas, Jens Jordan
DOI:https://doi.org/10.1002/oby.20728
ISSN:1930-7381
ISSN:1930-739X
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/24616451
Title of parent work (English):Obesity
Publisher:Wiley-Blackwell
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:22
Issue:5
Number of pages:7
First page:E70
Last Page:E76
Funding institution:German Competence Network of Obesity through Federal Ministry for Research and Education [01GI1122D]
Organizational units:Humanwissenschaftliche Fakultät / Strukturbereich Kognitionswissenschaften / Department Psychologie
Peer review:Referiert
Institution name at the time of the publication:Humanwissenschaftliche Fakultät / Institut für Psychologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.