• search hit 1 of 1
Back to Result List

Ease of access to list items in short-term memory depends on the order of the recognition probes

  • We report data from 4 experiments using a recognition design with multiple probes to be matched to specific study positions. Items could be accessed rapidly, independent of set size, when the test order matched the study order (forward condition). When the order of testing was random, backward, or in a prelearned irregular sequence (reordered conditions), the classic Sternberg result was obtained: Response times were slow and increased linearly with set size. A number of explanations for forward-condition facilitation were ruled out, such as the predictability of the study order (Experiment 2), the predictability of the probe order (Experiment 1), the covariation of study and test orders (Experiments 1, 2, and 4), processes of probe encoding and perception that did not rely on STM access (Experiments I, 2, and 4), specific support of the forward condition by articulatory processes (Experiment 3), or condition-dependent strategic differences (Experiment 4). More detailed analyses demonstrated that fast forward responses could not beWe report data from 4 experiments using a recognition design with multiple probes to be matched to specific study positions. Items could be accessed rapidly, independent of set size, when the test order matched the study order (forward condition). When the order of testing was random, backward, or in a prelearned irregular sequence (reordered conditions), the classic Sternberg result was obtained: Response times were slow and increased linearly with set size. A number of explanations for forward-condition facilitation were ruled out, such as the predictability of the study order (Experiment 2), the predictability of the probe order (Experiment 1), the covariation of study and test orders (Experiments 1, 2, and 4), processes of probe encoding and perception that did not rely on STM access (Experiments I, 2, and 4), specific support of the forward condition by articulatory processes (Experiment 3), or condition-dependent strategic differences (Experiment 4). More detailed analyses demonstrated that fast forward responses could not be accounted for by the effects of input position and output position that modulated random responses, effects that did account for the slower responses of the reordered conditions (Experiments 1, 3, and 4). A final analysis of probe-to-probe transitions as a function of encoding distance revealed a sizeable single-step benefit in the random condition. We concluded that STM representations were serial rather than spatial and that forward probes benefited from their serial adjacency.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Elke B. Lange, John Cerella, Paul Verhaeghen
DOI:https://doi.org/10.1037/a0022220
ISSN:0278-7393
ISSN:1939-1285
Title of parent work (English):Journal of experimental psychology : Learning, memory, and cognition
Publisher:American Psychological Association
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Tag:chaining; memory access; recognition memory; serial order memory; short-term memory
Volume:37
Issue:3
Number of pages:13
First page:608
Last Page:620
Funding institution:National Institute on Aging [R01AG016201]
Organizational units:Humanwissenschaftliche Fakultät / Strukturbereich Kognitionswissenschaften / Department Psychologie
Peer review:Referiert
Institution name at the time of the publication:Humanwissenschaftliche Fakultät / Institut für Psychologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.