• search hit 22 of 83
Back to Result List

Exhumation paths of high-pressure-low-temperature metamorphic rocks from the Lycian Nappes and the Menderes Massif (SW Turkey) : a multi-equilibrium approach

  • The Menderes Massif and the overlying Lycian Nappes occupy an extensive area of SW Turkey where high-pressure- low-temperature metamorphic rocks occur. Precise retrograde P-T paths reflecting the tectonic mechanisms responsible for the exhumation of these high-pressure-low-temperature rocks can be constrained with multi-equilibrium P-T estimates relying on local equilibria. Whereas a simple isothermal decompression is documented for the exhumation of high-pressure parageneses from the southern Menderes Massif, various P-T paths are observed in the overlying Karaova Formation of the Lycian Nappes. In the uppermost levels of this unit, far from the contact with the Menderes Massif, all P-T estimates depict cooling decompression paths. These high-pressure cooling paths are associated with top-to-the-NNE movements related to the Akcakaya shear zone, located at the top of the Karaova Formation. This zone of strain localization is a local intra-nappe contact that was active in the early stages of exhumation of the high-pressure rocks. InThe Menderes Massif and the overlying Lycian Nappes occupy an extensive area of SW Turkey where high-pressure- low-temperature metamorphic rocks occur. Precise retrograde P-T paths reflecting the tectonic mechanisms responsible for the exhumation of these high-pressure-low-temperature rocks can be constrained with multi-equilibrium P-T estimates relying on local equilibria. Whereas a simple isothermal decompression is documented for the exhumation of high-pressure parageneses from the southern Menderes Massif, various P-T paths are observed in the overlying Karaova Formation of the Lycian Nappes. In the uppermost levels of this unit, far from the contact with the Menderes Massif, all P-T estimates depict cooling decompression paths. These high-pressure cooling paths are associated with top-to-the-NNE movements related to the Akcakaya shear zone, located at the top of the Karaova Formation. This zone of strain localization is a local intra-nappe contact that was active in the early stages of exhumation of the high-pressure rocks. In contrast, at the base of the Karaova Formation, along the contact with the Menderes Massif, P-T calculations show decompressional heating exhumation paths. These paths are associated with severe deformation characterized by top-to-the-east shearing related to a major shear zone (the Gerit shear zone) that reflects late exhumation of high-pressure parageneses under warmer conditionsshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Gaetan Rimmele, T. Parra, B. Goffe, Roland OberhänsliGND, L. Jolivet, O. Candan
ISSN:0022-3530
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Journal of Petrology. - ISSN 0022-3530. - 46 (2005), 3, S. 641 - 669
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.