• search hit 7 of 13
Back to Result List

Soil C and nutrient stores under Scots pine afforestations compared to ancient beech forests in the German Pleistocene - the role of tree species and forest history

  • In the diluvial lowlands of northern Germany, the Netherlands and northern Poland, an estimated similar to 5 Mio ha of Scots pine plantations (Pinus sylvestris) has been established on sandy soil in the last 250 years replacing the former temperate broad-leaved forests after extended periods of cultivation in the Middle Ages. We examined the effect of variable stand continuity of pine plantations (recent vs. ancient: 51-128 vs. >230 years) on the soil organic carbon (SOC) store and soil nutrient capital in comparison to ancient beech forests (>230 years of continuity) which represent the potential natural forest vegetation. Recent and ancient pine stands had c. 75% larger organic layer C stores than ancient beech forests, while the total C stock in the soil (organic layer and mineral soil to 100 cm) was similar to 25% larger in the beech forests due to higher C concentrations in 0-50 cm depth of the mineral soil. The soil stores of N-tot were similar to 50% and the exchangeable Ca, K and Mg pools about three times larger under beechIn the diluvial lowlands of northern Germany, the Netherlands and northern Poland, an estimated similar to 5 Mio ha of Scots pine plantations (Pinus sylvestris) has been established on sandy soil in the last 250 years replacing the former temperate broad-leaved forests after extended periods of cultivation in the Middle Ages. We examined the effect of variable stand continuity of pine plantations (recent vs. ancient: 51-128 vs. >230 years) on the soil organic carbon (SOC) store and soil nutrient capital in comparison to ancient beech forests (>230 years of continuity) which represent the potential natural forest vegetation. Recent and ancient pine stands had c. 75% larger organic layer C stores than ancient beech forests, while the total C stock in the soil (organic layer and mineral soil to 100 cm) was similar to 25% larger in the beech forests due to higher C concentrations in 0-50 cm depth of the mineral soil. The soil stores of N-tot were similar to 50% and the exchangeable Ca, K and Mg pools about three times larger under beech than under the pine stands. Resin-exchangeable P was enriched in the soils under ancient pine stands probably due to manuring in the past. After clear-cut and long cultivation, it may take >230 years of forest presence to restore the greatly reduced mineral soil C and N pools. The C and N sequestration potential of the soils appeared to be particularly small under pine indicating a pronounced tree species (pine vs. beech) effect on soil C and N dynamics. We conclude that, in the face of rising greenhouse gas emissions, the limited soil C and nutrient storage potential of Scots pine plantations on sandy soils needs consideration when selecting suitable tree species for future forestry. (C) 2013 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Christoph Leuschner, Monika WulfORCiD, Patricia Bäuchler, Dietrich Hertel
DOI:https://doi.org/10.1016/j.foreco.2013.08.043
ISSN:0378-1127
ISSN:1872-7042
Title of parent work (English):Forest ecology and management
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:Fagus sylvatica; Forest continuity; Historic land use; Nitrogen; Pinus sylvestris; Sandy soil
Volume:310
Issue:6
Number of pages:11
First page:405
Last Page:415
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.