• search hit 3 of 6
Back to Result List

Movement strategies of a multi-mode bacterial swimmer

  • Bacteria are one of the most widespread kinds of microorganisms that play essential roles in many biological and ecological processes. Bacteria live either as independent individuals or in organized communities. At the level of single cells, interactions between bacteria, their neighbors, and the surrounding physical and chemical environment are the foundations of microbial processes. Modern microscopy imaging techniques provide attractive and promising means to study the impact of these interactions on the dynamics of bacteria. The aim of this dissertation is to deepen our understanding four fundamental bacterial processes – single-cell motility, chemotaxis, bacterial interactions with environmental constraints, and their communication with neighbors – through a live cell imaging technique. By exploring these processes, we expanded our knowledge on so far unexplained mechanisms of bacterial interactions. Firstly, we studied the motility of the soil bacterium Pseudomonas putida (P. putida), which swims through flagella propulsion,Bacteria are one of the most widespread kinds of microorganisms that play essential roles in many biological and ecological processes. Bacteria live either as independent individuals or in organized communities. At the level of single cells, interactions between bacteria, their neighbors, and the surrounding physical and chemical environment are the foundations of microbial processes. Modern microscopy imaging techniques provide attractive and promising means to study the impact of these interactions on the dynamics of bacteria. The aim of this dissertation is to deepen our understanding four fundamental bacterial processes – single-cell motility, chemotaxis, bacterial interactions with environmental constraints, and their communication with neighbors – through a live cell imaging technique. By exploring these processes, we expanded our knowledge on so far unexplained mechanisms of bacterial interactions. Firstly, we studied the motility of the soil bacterium Pseudomonas putida (P. putida), which swims through flagella propulsion, and has a complex, multi-mode swimming tactic. It was recently reported that P. putida exhibits several distinct swimming modes – the flagella can push and pull the cell body or wrap around it. Using a new combined phase-contrast and fluorescence imaging set-up, the swimming mode (push, pull, or wrapped) of each run phase was automatically recorded, which provided the full swimming statistics of the multi-mode swimmer. Furthermore, the investigation of cell interactions with a solid boundary illustrated an asymmetry for the different swimming modes; in contrast to the push and pull modes, the curvature of runs in wrapped mode was not affected by the solid boundary. This finding suggested that having a multi-mode swimming strategy may provide further versatility to react to environmental constraints. Then we determined how P. putida navigates toward chemoattractants, i.e. its chemotaxis strategies. We found that individual run modes show distinct chemotactic responses in nutrition gradients. In particular, P. putida cells exhibited an asymmetry in their chemotactic responsiveness; the wrapped mode (slow swimming mode) was affected by the chemoattractant, whereas the push mode (fast swimming mode) was not. These results can be seen as a starting point to understand more complex chemotaxis strategies of multi-mode swimmers going beyond the well-known paradigm of Escherichia coli, that exhibits only one swimming mode. Finally we considered the cell dynamics in a dense population. Besides physical interactions with their neighbors, cells communicate their activities and orchestrate their population behaviors via quorum-sensing. Molecules that are secreted to the surrounding by the bacterial cells, act as signals and regulate the cell population behaviour. We studied P. putida’s motility in a dense population by exposing the cells to environments with different concentrations of chemical signals. We found that higher amounts of chemical signals in the surrounding influenced the single-cell behaviourr, suggesting that cell-cell communications may also affect the flagellar dynamics. In summary, this dissertation studies the dynamics of a bacterium with a multi-mode swimming tactic and how it is affected by the surrounding environment using microscopy imaging. The detailed description of the bacterial motility in fundamental bacterial processes can provide new insights into the ecology of microorganisms.show moreshow less
  • Bakterien gehören zu den am weitesten verbreiteten Mikroorganismen mit einer essentiellen Bedeutung in vielen biologischen und okologischen Prozessen. Bakterien können entweder als unabhängige Individuen oder in organisierten Gemeinschaften leben. Auf dem Level einer einzelnen Zelle sind Interaktionen zwischen Bakterien, ihren Nachbarn und des umgebenden physikalischen und chemischen Umwelt die Grundlage von mikrobiellen Prozessen. Mikroskopische Bildgebungs techniken bieten attraktive und vielversprechende Möglichkeiten den Einfluß dieses Interaktionen auf die Dynamik von Bakterien zu untersuchen. Das ziel dieser Dissertation ist es, vier fundamentale bakterielle Prozesse mittels Lebendzell-Mikroskopie besser zu verstehen – die Einzelzellbewegung, die Chemotaxis, die Wechselwirkungen der Bakterien mit der Umgebung und ihre Kommunikation mit Nachbarzellen. Durch die Untersuchung dieser Prozesse konnten wir das Wissen über die bisher ungeklärten Mechanismen der bakteriellen Interaktionen erweitern. Als Erstes untersuchten wir dieBakterien gehören zu den am weitesten verbreiteten Mikroorganismen mit einer essentiellen Bedeutung in vielen biologischen und okologischen Prozessen. Bakterien können entweder als unabhängige Individuen oder in organisierten Gemeinschaften leben. Auf dem Level einer einzelnen Zelle sind Interaktionen zwischen Bakterien, ihren Nachbarn und des umgebenden physikalischen und chemischen Umwelt die Grundlage von mikrobiellen Prozessen. Mikroskopische Bildgebungs techniken bieten attraktive und vielversprechende Möglichkeiten den Einfluß dieses Interaktionen auf die Dynamik von Bakterien zu untersuchen. Das ziel dieser Dissertation ist es, vier fundamentale bakterielle Prozesse mittels Lebendzell-Mikroskopie besser zu verstehen – die Einzelzellbewegung, die Chemotaxis, die Wechselwirkungen der Bakterien mit der Umgebung und ihre Kommunikation mit Nachbarzellen. Durch die Untersuchung dieser Prozesse konnten wir das Wissen über die bisher ungeklärten Mechanismen der bakteriellen Interaktionen erweitern. Als Erstes untersuchten wir die Fortbewegung des Bodenbakteriums Pseudomonas putida (P. putida), welches mit Hilfe eines Flagellenantriebs schwimmt und eine komplexe multi-mode Schwimmstrategie aufweist. Kürzlich wurde veröffentlich, dass P. putida mehrere unterschiedliche Schwimmmodi besitzt – die Flagellen können den Zellkörper nach vorne drücken (push) oder ziehen (pull) oder sich um ihn wickeln (wrap). Unter Verwendung einer neuen Methode, der kombinierten Phasenkontrast- und Fluoreszenzmikroskopie, konnten die Schwimmmodi (push, pull oder wrap) für jede Schwimmphase automatisch aufgenommen werden, was eine vollständige Schwimmstatistik des multi-mode Schwimmers lieferte. Weiterhin zeigte die Untersuchung von Interaktionen mit einer festen Grenzschicht eine Asymmetrie bezüglich der verschiedenen Schwimmmodi. Im Gegensatz zu push und pull, der wrapped Modus nicht durch die feste Grenzschicht beeinflusst. Diese Ergebnisse lassen vermuten, dass eine multi-mode Schwimmstrategie dem Bakterium weitere möglichkeiten bietet, sich an die Umgebungsbedingungen anzupassen. Als Nächstes haben wir bestimmt, wie P. putida in Richtung eines Lockstoffes navigiert (Chemotaxis). Wir haben herausgefunden, dass einzelne Schwimmmodi eine unterschiedliche chemotaktische Antwort in Nährstoff-gradienten zeigen. P. putida besitzt eine Asymmetrie in seiner chemotaktischen Ansprechbarkeit: der wrapped Modus (langsamer Schwimmmodus) wird vom Lockstoff beeinflusst, der push Modus (schneller Schwimmmodus) hingegen nicht. Diese Ergebnisse können als Ausgangspunkt gesehen werden, um komplexere Chemotaxisstrategien von mulit-mode Schwimmern zu verstehen, die über das bekannte Musterbeispiel Escherichia coli hinaus gehen, des nur einen schwimmmodus aufweist. schließend haben wir die Zelldynamik in dichten Kulturen untersucht. Neben den physikalischen Interaktionen mit den Nachbarzellen, kommunizieren zellen ihre Aktivitäten und organisieren ihr Populationsverhalten über quorum sensing. Moleküle, die von den Bakterienzellen in die Umgebung sekretiert werden, wirken als Signale und regulieren das Verhalten der Zellpopulation. Wir haben die Bewegung von P. putida in hoher Zelldichte untersucht, indem wir die Zellen unterschiedlichen Konzentrationen dieses Moleküle aussetzten. Wir haben festgestellt, dass größere Mengen dieser signalstoffe in der Umgebung die Einzelzelldynamik beeinflusst haben. Dies lässt uns vermuten, dass sich die Zell-Zell-Kommunikation auch auf die Flagellendynamik auswirkt. Zusammenfassend zeigt diese Dissertation mittels Mikroskopie die Dynamik von einem Bakterium mit multi-mode Schwimmstrategie und wie die umgebende Umwelt diese Dynamik beeinflußt. Die detaillierte Beschreibung der Bakterienmotilität in grundlegenden bakteriellen Prozessen kann neue Erkenntnisse für die ökologie der Mikroorganismen bringen.show moreshow less

Download full text files

  • SHA-512:5ed6ddd76972f17eb724d0c031c5631b424e51f49ea8f7f107ec803ba7b570db4f746ca89146a5b9c942cabaa4cc6bfacdee4150b964ce77487d914d18137f97

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Zahra AlirezaeizanjaniORCiDGND
URN:urn:nbn:de:kobv:517-opus4-475806
DOI:https://doi.org/10.25932/publishup-47580
translated title (German):Bewegungsstrategien von bakteriellenmulti-mode Schwimmern
Reviewer(s):Damien FaivreORCiDGND, Stefan KlumppORCiDGND
Supervisor(s):Carsten Beta
Publication type:Doctoral Thesis
Language:English
Publication year:2020
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/08/13
Release date:2020/09/16
Tag:Bakterien; Chemotaxis; Einzelzellbewegung; Flagellen
Bacteria; Chemotaxis; Flagella; Single-cell motility
Number of pages:xix, 111
RVK - Regensburg classification:WF 5300
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.