• search hit 1 of 2
Back to Result List

Regional catchment classification with respect to low flow risk in a Pleistocene landscape

  • The classification of small catchments with respect to low flow risk is needed by water and environmental managers to plan adaptation measures for freshwater streams. In this study a new approach is presented to assess the risk of seasonal low flow in the Pleistocene landscape of the Federal State of Brandenburg in Germany. Seasonal low flow and drought in small streams is very common in this region and is predicted to increase due to climate change within the next decades. Data of 15 years (1991-2006) of daily discharge at 37 small catchments (<500 km(2)) and rainfall data from the same region were used. Principal component analyses were applied to the two data sets separately. The first five principal components of the discharge data, principal components of a precipitation data set covering the same catchments and catchment characteristics were used to explain the patterns found. The first five discharge components explained 72.9% of the total variance in the data set. The first component reflected the general regional dischargeThe classification of small catchments with respect to low flow risk is needed by water and environmental managers to plan adaptation measures for freshwater streams. In this study a new approach is presented to assess the risk of seasonal low flow in the Pleistocene landscape of the Federal State of Brandenburg in Germany. Seasonal low flow and drought in small streams is very common in this region and is predicted to increase due to climate change within the next decades. Data of 15 years (1991-2006) of daily discharge at 37 small catchments (<500 km(2)) and rainfall data from the same region were used. Principal component analyses were applied to the two data sets separately. The first five principal components of the discharge data, principal components of a precipitation data set covering the same catchments and catchment characteristics were used to explain the patterns found. The first five discharge components explained 72.9% of the total variance in the data set. The first component reflected the general regional discharge pattern. Components 2 and 3 of the discharge data could be related to spatial patterns of precipitation. Components 4 and 5 of the discharge data reflected geohydrologic processes within the catchments. In order to identify catchments with high risk with respect to low flows, component three and five were important as they both identified catchments with faster decrease of flows during summer. These components were used to estimate low flow risk. Catchments located in the northeast of Brandenburg, especially those in the Barnim highlands north and east of Berlin, were identified to be prone to seasonal low flow. There water management measures to adapt to climate change are needed the most.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Björn Thomas, Gunnar LischeidORCiDGND, Jörg Steidl, Ralf DannowskiORCiD
DOI:https://doi.org/10.1016/j.jhydrol.2012.10.020
ISSN:0022-1694
ISSN:1879-2707
Title of parent work (English):Journal of hydrology
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:Catchment characteristics; Catchment classification; Precipitation pattern; Principal component analysis; Regional scale
Volume:475
Issue:2
Number of pages:11
First page:392
Last Page:402
Funding institution:German Federal Ministry of Education and Research, KLI-MZUG
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.