• search hit 1 of 1
Back to Result List

Structural and dynamical properties of supercritical H2O-SiO2 fluids studied by ab initio molecular dynamics

  • In this study we report the structure of supercritical H2O-SiO2 fluid composed of 50 mol% H2O and 50 mol% SiO2 at 3000 K and 2400 K. investigated by means of ab initio molecular dynamics of models comprising 192 and 96 atoms. The density is set constant to 138 g/cm(3), which yields a pressure of 4.3 GPa at 3000 K and 3.6 GPa at 2400 K. Throughout the trajec[ories, water molecules are formed and dissociated via the network modifying reaction 2 SiOH = SiOSi + H2O The calculation of the reaction constant K- [OH](2)/[H2O][O2-] is carried out on the basis of the experimentally relevant Q ' species notation and agrees well with an extrapolation of experimental data to 3000 K. After quench from 3000 K to 2400 K, the degree of polymerization of the silicate network in the 192-atom models increases noticeably within several tens of picoseconds, accompanied by release of molecular H2O. An unexpected opposite trend is observed in smaller 96-atom models, due to a finite size effect, as several uncorrelated models of 192 and 96 atoms indicate. TheIn this study we report the structure of supercritical H2O-SiO2 fluid composed of 50 mol% H2O and 50 mol% SiO2 at 3000 K and 2400 K. investigated by means of ab initio molecular dynamics of models comprising 192 and 96 atoms. The density is set constant to 138 g/cm(3), which yields a pressure of 4.3 GPa at 3000 K and 3.6 GPa at 2400 K. Throughout the trajec[ories, water molecules are formed and dissociated via the network modifying reaction 2 SiOH = SiOSi + H2O The calculation of the reaction constant K- [OH](2)/[H2O][O2-] is carried out on the basis of the experimentally relevant Q ' species notation and agrees well with an extrapolation of experimental data to 3000 K. After quench from 3000 K to 2400 K, the degree of polymerization of the silicate network in the 192-atom models increases noticeably within several tens of picoseconds, accompanied by release of molecular H2O. An unexpected opposite trend is observed in smaller 96-atom models, due to a finite size effect, as several uncorrelated models of 192 and 96 atoms indicate. The temperature-dependent slowing down of the H2O-silica interaction dynamics is described on the basis of the bond autocorrelation function. (C) 2016 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Georg SpiekermannORCiDGND, Max WilkeORCiDGND, Sandro Jahn
DOI:https://doi.org/10.1016/j.chemgeo.2016.01.010
ISSN:0009-2541
ISSN:1878-5999
Title of parent work (English):Chemical geology : official journal of the European Association for Geochemistry
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:DFT; Fluid; Polymerization; SiO(2)Molecular dynamics; SiO2-H2O
Volume:426
Number of pages:10
First page:85
Last Page:94
Funding institution:Mich Supercomputing Centre (JSC) [HPO15]; Deutsche Forschungsgemeinschaft (DFG) from the Emmy-Noether-Program [JA1469/4-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.