• search hit 25 of 1993
Back to Result List

A channel transmission losses model for different dryland rivers

  • Channel transmission losses in drylands take place normally in extensive alluvial channels or streambeds underlain by fractured rocks. They can play an important role in streamflow rates, groundwater recharge, freshwater supply and channel-associated ecosystems. We aim to develop a process-oriented, semi-distributed channel transmission losses model, using process formulations which are suitable for data-scarce dryland environments and applicable to both hydraulically disconnected losing streams and hydraulically connected losing(/gaining) streams. This approach should be able to cover a large variation in climate and hydro-geologic controls, which are typically found in dryland regions of the Earth. Our model was first evaluated for a losing/gaining, hydraulically connected 30 km reach of the Middle Jaguaribe River (MJR), Ceara, Brazil, which drains a catchment area of 20 000 km(2). Secondly, we applied it to a small losing, hydraulically disconnected 1.5 km channel reach in the Walnut Gulch Experimental Watershed (WGEW), Arizona,Channel transmission losses in drylands take place normally in extensive alluvial channels or streambeds underlain by fractured rocks. They can play an important role in streamflow rates, groundwater recharge, freshwater supply and channel-associated ecosystems. We aim to develop a process-oriented, semi-distributed channel transmission losses model, using process formulations which are suitable for data-scarce dryland environments and applicable to both hydraulically disconnected losing streams and hydraulically connected losing(/gaining) streams. This approach should be able to cover a large variation in climate and hydro-geologic controls, which are typically found in dryland regions of the Earth. Our model was first evaluated for a losing/gaining, hydraulically connected 30 km reach of the Middle Jaguaribe River (MJR), Ceara, Brazil, which drains a catchment area of 20 000 km(2). Secondly, we applied it to a small losing, hydraulically disconnected 1.5 km channel reach in the Walnut Gulch Experimental Watershed (WGEW), Arizona, USA. The model was able to predict reliably the streamflow volume and peak for both case studies without using any parameter calibration procedure. We have shown that the evaluation of the hypotheses on the dominant hydrological processes was fundamental for reducing structural model uncertainties and improving the streamflow prediction. For instance, in the case of the large river reach (MJR), it was shown that both lateral stream-aquifer water fluxes and groundwater flow in the underlying alluvium parallel to the river course are necessary to predict streamflow volume and channel transmission losses, the former process being more relevant than the latter. Regarding model uncertainty, it was shown that the approaches, which were applied for the unsaturated zone processes (highly nonlinear with elaborate numerical solutions), are much more sensitive to parameter variability than those approaches which were used for the saturated zone (mathematically simple water budgeting in aquifer columns, including backwater effects). In case of the MJR-application, we have seen that structural uncertainties due to the limited knowledge of the subsurface saturated system interactions (i.e. groundwater coupling with channel water; possible groundwater flow parallel to the river) were more relevant than those related to the subsurface parameter variability. In case of the WEGW application we have seen that the non-linearity involved in the unsaturated flow processes in disconnected dryland river systems (controlled by the unsaturated zone) generally contain far more model uncertainties than do connected systems controlled by the saturated flow. Therefore, the degree of aridity of a dryland river may be an indicator of potential model uncertainty and subsequent attainable predictability of the system.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:A. C. Costa, Axel BronstertORCiDGND, Jose Carlos de AraujoORCiD
DOI:https://doi.org/10.5194/hess-16-1111-2012
ISSN:1027-5606
Title of parent work (English):Hydrology and earth system sciences : HESS
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Volume:16
Issue:4
Number of pages:25
First page:1111
Last Page:1135
Funding institution:Brazilian National Council for Scientific and Technological Development (CNPq); United States Department of Agriculture, Agricultural Research Service
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
Peer review:Referiert
Publishing method:Open Access
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geographie und Geoökologie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geoökologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.