• search hit 1 of 1
Back to Result List

Groundwater influence differentially affects periphyton and macrophyte production in lakes

  • Groundwater influx can significantly contribute to nutrient and carbon budgets of lakes, and its influence is the strongest in littoral areas dominated by macrophytes and periphyton. We have reviewed the effects of groundwater-borne nitrogen and phosphorus and dissolved inorganic and organic carbon (DIC, DOC) on these benthic primary producers in lakes. We develop a hypothesis for groundwater effects including the less studied impacts of periphyton shading on macrophytes. Groundwater-borne nutrients and DIC promote both macrophytes and periphyton. Direct studies on groundwater-borne DOC effects are lacking, but coloured DOC contributes to light attenuation and thus can restrict the growth of benthic primary producers. We predict that above certain threshold levels of nutrient influx by groundwater, periphyton and macrophyte biomass should decline owing to shading by phytoplankton and periphyton, respectively. However, because of their higher light requirements, those thresholds should be lower for macrophytes. For macrophytes, aGroundwater influx can significantly contribute to nutrient and carbon budgets of lakes, and its influence is the strongest in littoral areas dominated by macrophytes and periphyton. We have reviewed the effects of groundwater-borne nitrogen and phosphorus and dissolved inorganic and organic carbon (DIC, DOC) on these benthic primary producers in lakes. We develop a hypothesis for groundwater effects including the less studied impacts of periphyton shading on macrophytes. Groundwater-borne nutrients and DIC promote both macrophytes and periphyton. Direct studies on groundwater-borne DOC effects are lacking, but coloured DOC contributes to light attenuation and thus can restrict the growth of benthic primary producers. We predict that above certain threshold levels of nutrient influx by groundwater, periphyton and macrophyte biomass should decline owing to shading by phytoplankton and periphyton, respectively. However, because of their higher light requirements, those thresholds should be lower for macrophytes. For macrophytes, a threshold level is also predicted for a shift from DIC limitation to light limitation. Differences in light requirements are expected to result in lower thresholds of DOC loading for declines of macrophytes than periphyton.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Cécile PérillonORCiDGND, Sabine HiltORCiDGND
DOI:https://doi.org/10.1007/s10750-015-2485-9
ISSN:0018-8158
ISSN:1573-5117
Title of parent work (English):Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica
Publisher:Springer
Place of publishing:Dordrecht
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:Dissolved inorganic carbon; Dissolved organic carbon; Light; Macrophytes; Nutrients; Periphyton
Volume:778
Number of pages:13
First page:91
Last Page:103
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.