• search hit 6 of 6
Back to Result List

Granitoid magmas preserved as melt inclusions in high-grade metamorphic rocks

  • This review presents a compositional database of primary anatectic granitoid magmas, entirely based on melt inclusions (MI) in high-grade metamorphic rocks. Although MI are well known to igneous petrologists and have been extensively studied in intrusive and extrusive rocks, MI in crustal rocks that have undergone anatexis (migmatites and granulites) are a novel subject of research. They are generally trapped along the heating path by peritectic phases produced by incongruent melting reactions. Primary MI in high-grade metamorphic rocks are small, commonly 5-10 pm in diameter, and their most common mineral host is peritectic garnet. In most cases inclusions have crystallized into a cryptocrystalline aggregate and contain a granitoid phase assemblage (nanogranitoid inclusions) with quartz, K-feldspar, plagioclase, and one or two mica depending on the particular circumstances. After their experimental remelting under high-confining pressure, nanogranitoid MI can be analyzed combining several techniques (EMP, LA-ICP-MS, NanoSIMS, Raman).This review presents a compositional database of primary anatectic granitoid magmas, entirely based on melt inclusions (MI) in high-grade metamorphic rocks. Although MI are well known to igneous petrologists and have been extensively studied in intrusive and extrusive rocks, MI in crustal rocks that have undergone anatexis (migmatites and granulites) are a novel subject of research. They are generally trapped along the heating path by peritectic phases produced by incongruent melting reactions. Primary MI in high-grade metamorphic rocks are small, commonly 5-10 pm in diameter, and their most common mineral host is peritectic garnet. In most cases inclusions have crystallized into a cryptocrystalline aggregate and contain a granitoid phase assemblage (nanogranitoid inclusions) with quartz, K-feldspar, plagioclase, and one or two mica depending on the particular circumstances. After their experimental remelting under high-confining pressure, nanogranitoid MI can be analyzed combining several techniques (EMP, LA-ICP-MS, NanoSIMS, Raman). The trapped melt is granitic and metaluminous to peraluminous, and sometimes granodioritic, tonalitic, and trondhjemitic in composition, in agreement with the different P-T-a(H2o) conditions of melting and protolith composition, and overlap the composition of experimental glasses produced at similar conditions. Being trapped along the up-temperature trajectory as opposed to classic MI in igneous rocks formed during down-temperature magma crystallization fundamental information provided by nanogranitoid MI is the pristine composition of the natural primary anatectic melt for the specific rock under investigation. So far similar to 600 nanogranitoid MI, coming from several occurrences from different geologic and geodynamic settings and ages, have been characterized. Although the compiled MI database should be expanded to other potential sources of crustal magmas, MI data collected so far can be already used as natural "starting-point" compositions to track the processes involved in formation and evolution of granitoid magmas.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Omar Bartoli, Antonio Acosta-Vigil, Silvio FerreroORCiDGND, Bernardo Cesare
DOI:https://doi.org/10.2138/am-2016-5541CCBYNCND
ISSN:0003-004X
ISSN:1945-3027
Title of parent work (English):American mineralogist : an international journal of earth and planetary materials
Publisher:Mineralogical Society of America
Place of publishing:Chantilly
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:Granitoid magmas; crustal anatexis; melt inclusions; nanogranite; peritectic phase
Volume:101
Number of pages:17
First page:1543
Last Page:1559
Funding institution:Italian Ministry of Education, University, Research [SIR RB-SI14Y7PF, PRIN 2010TT22SC]; Padova University [CPDA107188/10, 600376]; Ministerio de Ciencia e Innovacion of Spain [CGL2007-62992]; Alexander von Humboldt Foundation; German Federal Ministry for Education and Research; Deutsche Forschungsgemeinschaft [FE 1527/2-1]; European Commission [600376]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.