• search hit 7 of 7
Back to Result List

Mycosporine-like amino acids (MAAs)-producing Microcystis in Lake Erie

  • Mycosporine-like amino acids (MAAs) are UV-absorbing metabolites found in cyanobacteria. While their protective role from UV in Microcystis has been studied in a laboratory setting, a full understanding of the ecology of MAA-producing versus non-MAA-producing Microcystis in natural environments is lacking. This study presents a new tool for quantifying MAA-producing Microcystis and applies it to obtain insight into the dynamics of MAA-producing and non-MAA-producing Microcystis in Lake Erie. This study first developed a sensitive, specific TaqMan real-time PCR assay that targets MAA synthetase gene C (mysC) of Microcystis (quantitative range: 1.7 × 101 to 1.7 × 107 copies/assay). Using this assay, Microcystis was quantified with a MAA-producing genotype (mysC+) in water samples (n = 96) collected during March-November 2013 from 21 Lake Erie sites (undetectable − 8.4 × 106 copies/ml). The mysC+ genotype comprised 0.3–37.8% of the Microcystis population in Lake Erie during the study period. The proportion of the mysC+ genotype duringMycosporine-like amino acids (MAAs) are UV-absorbing metabolites found in cyanobacteria. While their protective role from UV in Microcystis has been studied in a laboratory setting, a full understanding of the ecology of MAA-producing versus non-MAA-producing Microcystis in natural environments is lacking. This study presents a new tool for quantifying MAA-producing Microcystis and applies it to obtain insight into the dynamics of MAA-producing and non-MAA-producing Microcystis in Lake Erie. This study first developed a sensitive, specific TaqMan real-time PCR assay that targets MAA synthetase gene C (mysC) of Microcystis (quantitative range: 1.7 × 101 to 1.7 × 107 copies/assay). Using this assay, Microcystis was quantified with a MAA-producing genotype (mysC+) in water samples (n = 96) collected during March-November 2013 from 21 Lake Erie sites (undetectable − 8.4 × 106 copies/ml). The mysC+ genotype comprised 0.3–37.8% of the Microcystis population in Lake Erie during the study period. The proportion of the mysC+ genotype during high solar UV irradiation periods (mean = 18.8%) was significantly higher than that during lower UV periods (mean = 9.7%). Among the MAAs, shinorine (major) and porphyra (minor) were detected with HPLC-PDA-MS/MS from the Microcystis isolates and water samples. However, no significant difference in the MAA concentrations existed between higher and lower solar UV periods when the MAA concentrations were normalized with Microcystis mysC abundance. Collectively, this study’s findings suggest that the MAA-producing Microcystis are present in Lake Erie, and they may be ecologically advantageous under high UV conditions, but not to the point that they exclusively predominate over the non-MAA-producers.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Chenlin HuORCiD, Stuart A. Ludsin, Jay F. Martin, Elke DittmannORCiDGND, Jiyoung Lee
DOI:https://doi.org/10.1016/j.hal.2018.05.010
ISSN:1568-9883
ISSN:1878-1470
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/30005796
Title of parent work (English):Harmful algae
Subtitle (English):Development of a qPCR assay and insight into its ecology
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Date of first publication:2018/07/01
Publication year:2018
Release date:2021/11/12
Tag:Eutrophication; Harmful algal bloom; Porphyra; Shinorine; Sunscreen; UV irradiation
Volume:77
Number of pages:10
First page:1
Last Page:10
Funding institution:US EPAUnited States Environmental Protection Agency [RD835192010]; Ohio Sea Grant College Program [00019289]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.