• search hit 2 of 2
Back to Result List

A scaling approach for the assessment of biomass changes and rainfall interception using cosmic-ray neutron sensing

  • Cosmic-Ray neutron sensing (CRS) is a unique approach to measure soil moisture at field scale filling the gap of current methodologies. However, CRS signal is affected by all the hydrogen pools on the land surface and understanding their relative importance plays an important role for the application of the method e.g., validation of remote sensing products and data assimilation. In this study, a soil moisture scaling approach is proposed to estimate directly the correct CRS soil moisture based on the soil moisture profile measured at least in one position within the field. The approach has the advantage to avoid the need to introduce one correction for each hydrogen contribution and to estimate indirectly all the related time-varying hydrogen pools. Based on the data collected in three crop seasons, the scaling approach shows its ability to identify and to quantify the seasonal biomass water equivalent. Additionally, the analysis conducted at sub-daily time resolution is able to quantify the daily vertical redistribution of the waterCosmic-Ray neutron sensing (CRS) is a unique approach to measure soil moisture at field scale filling the gap of current methodologies. However, CRS signal is affected by all the hydrogen pools on the land surface and understanding their relative importance plays an important role for the application of the method e.g., validation of remote sensing products and data assimilation. In this study, a soil moisture scaling approach is proposed to estimate directly the correct CRS soil moisture based on the soil moisture profile measured at least in one position within the field. The approach has the advantage to avoid the need to introduce one correction for each hydrogen contribution and to estimate indirectly all the related time-varying hydrogen pools. Based on the data collected in three crop seasons, the scaling approach shows its ability to identify and to quantify the seasonal biomass water equivalent. Additionally, the analysis conducted at sub-daily time resolution is able to quantify the daily vertical redistribution of the water biomass and the rainfall interception, showing promising applications of the CRS method also for these types of measurements. Overall, the study underlines how not only soil moisture but all the specific hydrological processes in the soil-plant-atmosphere continuum should be considered for a proper evaluation of the CRS signal. For this scope, the scaling approach reveals to be a simple and pragmatic analysis that can be easily extended to other experimental sites. (C) 2015 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Gabriele BaroniORCiDGND, Sascha Eric OswaldORCiDGND
DOI:https://doi.org/10.1016/j.jhydrol.2015.03.053
ISSN:0022-1694
ISSN:1879-2707
Title of parent work (English):Journal of hydrology
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:Agricultural field; Biomass water; Cosmic-ray; Interception; Scaling; Soil moisture
Volume:525
Number of pages:13
First page:264
Last Page:276
Funding institution:Leibniz Institute for Agricultural Engineering Potsdam-Bornim (ATB); European Union [213007]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.