• search hit 10 of 155
Back to Result List

Thermocline deepening boosts ecosystem metabolism: evidence from a large-scale lake enclosure experiment simulating a summer storm

  • Extreme weather events can pervasively influence ecosystems. Observations in lakes indicate that severe storms in particular can have pronounced ecosystem-scale consequences, but the underlying mechanisms have not been rigorously assessed in experiments. One major effect of storms on lakes is the redistribution of mineral resources and plankton communities as a result of abrupt thermocline deepening. We aimed at elucidating the importance of this effect by mimicking in replicated large enclosures (each 9 m in diameter, ca. 20 m deep, ca. 1300 m 3 in volume) a mixing event caused by a severe natural storm that was previously observed in a deep clear-water lake. Metabolic rates were derived from diel changes in vertical profiles of dissolved oxygen concentrations using a Bayesian modelling approach, based on high-frequency measurements. Experimental thermocline deepening stimulated daily gross primary production (GPP) in surface waters by an average of 63% for > 4 weeks even though thermal stratification re-established within 5 days.Extreme weather events can pervasively influence ecosystems. Observations in lakes indicate that severe storms in particular can have pronounced ecosystem-scale consequences, but the underlying mechanisms have not been rigorously assessed in experiments. One major effect of storms on lakes is the redistribution of mineral resources and plankton communities as a result of abrupt thermocline deepening. We aimed at elucidating the importance of this effect by mimicking in replicated large enclosures (each 9 m in diameter, ca. 20 m deep, ca. 1300 m 3 in volume) a mixing event caused by a severe natural storm that was previously observed in a deep clear-water lake. Metabolic rates were derived from diel changes in vertical profiles of dissolved oxygen concentrations using a Bayesian modelling approach, based on high-frequency measurements. Experimental thermocline deepening stimulated daily gross primary production (GPP) in surface waters by an average of 63% for > 4 weeks even though thermal stratification re-established within 5 days. Ecosystem respiration (ER) was tightly coupled to GPP, exceeding that in control enclosures by 53% over the same period. As GPP responded more strongly than ER, net ecosystem productivity (NEP) of the entire water column was also increased. These protracted increases in ecosystem metabolism and autotrophy were driven by a proliferation of inedible filamentous cyanobacteria released from light and nutrient limitation after they were entrained from below the thermocline into the surface water. Thus, thermocline deepening by a single severe storm can induce prolonged responses of lake ecosystem metabolism independent of other storm-induced effects, such as inputs of terrestrial materials by increased catchment run-off. This highlights that future shifts in frequency, severity or timing of storms are an important component of climate change, whose impacts on lake thermal structure will superimpose upon climate trends to influence algal dynamics and organic matter cycling in clear-water lakes. Keywords: climate variability, ecosystem productivity, extreme events, gross primary production, mesocosm, respiration stratified lakesshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Darren P. Giling, Jens C. Nejstgaard, Stella A. BergerORCiD, Hans-Peter GrossartORCiDGND, Georgiy Kirillin, Armin Penske, Maren Lentz, Peter CasperORCiD, Joerg Sareyka, Mark O. Gessner
DOI:https://doi.org/10.1111/gcb.13512
ISSN:1354-1013
ISSN:1365-2486
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/27664076
Title of parent work (English):Global change biology
Publisher:Wiley
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Tag:climate variability; ecosystem productivity; extreme events; gross primary production; mesocosm; respiration stratified lakes
Volume:23
Number of pages:15
First page:1448
Last Page:1462
Funding institution:Leibniz Competition grant; HPG [SAW-2011-IGB-2]; German Federal Ministry of Education and Research (BMBF) [033L041B]; German Research Foundation (DFG) [GE 1775/2-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.