• search hit 8 of 12
Back to Result List

Covariance modulates the effect of joint temperature and food variance on ectotherm life-history traits

  • Understanding animal performance in heterogeneous or variable environments is a central question in ecology. We combine modelling and experiments to test how temperature and food availability variance jointly affect life-history traits of ectotherms. The model predicts that as mean temperatures move away from the ectotherm's thermal optimum, the effect size of joint thermal and food variance should become increasingly sensitive to their covariance. Below the thermal optimum, performance should be positively correlated with food–temperature covariance and the opposite is predicted above it. At lower temperatures, covariance should determine whether food and temperature variance increases or decreases performance compared to constant conditions. Somewhat stronger than predicted, the covariance effect below the thermal optimum was confirmed experimentally on an aquatic ectotherm (Daphnia magna) exposed to diurnal food and temperature variance with different amounts of covariance. Our findings have important implications for understandingUnderstanding animal performance in heterogeneous or variable environments is a central question in ecology. We combine modelling and experiments to test how temperature and food availability variance jointly affect life-history traits of ectotherms. The model predicts that as mean temperatures move away from the ectotherm's thermal optimum, the effect size of joint thermal and food variance should become increasingly sensitive to their covariance. Below the thermal optimum, performance should be positively correlated with food–temperature covariance and the opposite is predicted above it. At lower temperatures, covariance should determine whether food and temperature variance increases or decreases performance compared to constant conditions. Somewhat stronger than predicted, the covariance effect below the thermal optimum was confirmed experimentally on an aquatic ectotherm (Daphnia magna) exposed to diurnal food and temperature variance with different amounts of covariance. Our findings have important implications for understanding ectotherm responses to climate-driven alterations of thermal mean and variance.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Apostolos-Manuel Koussoroplis, Alexander WackerORCiDGND
DOI:https://doi.org/10.1111/ele.12546
ISSN:1461-023X
ISSN:1461-0248
Title of parent work (English):Ecology letters
Publisher:Wiley-Blackwell
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:Biotic interactions; Daphnia; co-limitation; environmental fluctuations; heterogeneity; variability; vertical migration; zooplankton
Volume:19
Number of pages:10
First page:143
Last Page:152
Funding institution:German Research Foundation [DFG: WA2445/8-1, WA2445/9-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.