• Treffer 3 von 3
Zurück zur Trefferliste

Mineralogical transformations set slow weathering rates in low-porosity metamorphic bedrock on mountain slopes in a tropical climate

  • In the Sri Lankan Highlands erosion and chemical weathering rates are among the lowest for global mountain denudation. In this tropical humid setting, highly weathered deep saprolite profiles have developed from high-grade metamorphic charnockite during spheroidal weathering of the bedrock. The spheroidal weathering produces rounded corestones and spalled rindlets at the rock-saprolite interface. We used detailed textural, mineralogical and chemical analyses to reconstruct the sequence of weathering reactions and their causes. The first mineral attacked by weathering was found to be pyroxene initiated by in situ Fe oxidation. Volumetric calculations suggest that this oxidation leads to the generation of porosity due to the formation of micro-fractures allowing for fluid transport and subsequent dissolution of biotite and plagioclase. The rapid ensuing plagioclase weathering leads to formation of high secondary porosity in the corestone over a distance of only a few cm and eventually to the final disaggregation of bedrock to saprolite.In the Sri Lankan Highlands erosion and chemical weathering rates are among the lowest for global mountain denudation. In this tropical humid setting, highly weathered deep saprolite profiles have developed from high-grade metamorphic charnockite during spheroidal weathering of the bedrock. The spheroidal weathering produces rounded corestones and spalled rindlets at the rock-saprolite interface. We used detailed textural, mineralogical and chemical analyses to reconstruct the sequence of weathering reactions and their causes. The first mineral attacked by weathering was found to be pyroxene initiated by in situ Fe oxidation. Volumetric calculations suggest that this oxidation leads to the generation of porosity due to the formation of micro-fractures allowing for fluid transport and subsequent dissolution of biotite and plagioclase. The rapid ensuing plagioclase weathering leads to formation of high secondary porosity in the corestone over a distance of only a few cm and eventually to the final disaggregation of bedrock to saprolite. The first secondary phases are oxides or amorphous precipitates from which secondary minerals (mainly gibbsite, kaolinite and goethite) form. As oxidation is the first weathering reaction, the supply of O-2 is a rate-limiting factor for chemical weathering. Hence, the supply of O-2 and its consumption at depth connects processes at the weathering front with those at the Earth's surface in a feedback mechanism. The strength of the feedback depends on the relative weight of advective versus diffusive transport of O-2 through the weathering profile. The feedback will be stronger with dominating diffusive transport. The low weathering rate is explained by the nature of this feedback that is ultimately dependent on the transport of O-2 through the whole regolith, and on lithological factors such as low bedrock porosity and the amount of Fe-bearing primary minerals. Tectonic quiescence in this region and low pre-development erosion rate (attributed to a dense vegetation cover) minimize the rejuvenation of the thick and cohesive regolith column, finally leading to low denudation rates. (C) 2015 Elsevier B.V. All rights reserved.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Ricarda Behrens, Julien Bouchez, Jan A. Schuessler, Stefan Dultz, Tilak Hewawasam, Friedhelm von BlanckenburgORCiDGND
DOI:https://doi.org/10.1016/j.chemgeo.2015.07.008
ISSN:0009-2541
ISSN:1878-5999
Titel des übergeordneten Werks (Englisch):Chemical geology : official journal of the European Association for Geochemistry
Verlag:Elsevier
Verlagsort:Amsterdam
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2015
Erscheinungsjahr:2015
Datum der Freischaltung:27.03.2017
Freies Schlagwort / Tag:Corestone; Critical zone; Regolith; Sri Lanka; Weathering
Band:411
Seitenanzahl:16
Erste Seite:283
Letzte Seite:298
Fördernde Institution:German Science Foundation (DFG) [GRK1364]; GFZ Potsdam; University of Potsdam
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.