• search hit 1 of 1
Back to Result List

The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate

  • The formate dehydrogenase from Rhodobactercapsulatus (RcFDH) is an oxygen-tolerant protein with an ()(2) subunit composition that is localized in the cytoplasm. It belongs to the group of metal and NAD(+)-dependent FDHs with the coordination of a molybdenum cofactor, four [Fe4S4] clusters and one [Fe2S2] cluster associated with the -subunit, one [Fe4S4] cluster and one FMN bound to the -subunit, and one [Fe2S2] cluster bound to the -subunit. RcFDH was heterologously expressed in Escherichiacoli and characterized. Cofactor analysis showed that the bis-molybdopterin guanine dinucleotide cofactor is bound to the FdsA subunit containing a cysteine ligand at the active site. A turnover rate of 2189min(-1) with formate as substrate was determined. The back reaction for the reduction of CO2 was catalyzed with a k(cat) of 89min(-1). The preference for formate oxidation shows an energy barrier for CO2 reduction of the enzyme. Furthermore, the FMN-containing and [Fe4S4]-containing -subunit together with the [Fe2S2]-containing -subunit forms aThe formate dehydrogenase from Rhodobactercapsulatus (RcFDH) is an oxygen-tolerant protein with an ()(2) subunit composition that is localized in the cytoplasm. It belongs to the group of metal and NAD(+)-dependent FDHs with the coordination of a molybdenum cofactor, four [Fe4S4] clusters and one [Fe2S2] cluster associated with the -subunit, one [Fe4S4] cluster and one FMN bound to the -subunit, and one [Fe2S2] cluster bound to the -subunit. RcFDH was heterologously expressed in Escherichiacoli and characterized. Cofactor analysis showed that the bis-molybdopterin guanine dinucleotide cofactor is bound to the FdsA subunit containing a cysteine ligand at the active site. A turnover rate of 2189min(-1) with formate as substrate was determined. The back reaction for the reduction of CO2 was catalyzed with a k(cat) of 89min(-1). The preference for formate oxidation shows an energy barrier for CO2 reduction of the enzyme. Furthermore, the FMN-containing and [Fe4S4]-containing -subunit together with the [Fe2S2]-containing -subunit forms a diaphorase unit with activities for both NAD(+) reduction and NADH oxidation. In addition to the structural genes fdsG, fdsB, and fdsA, the fds operon in R.capsulatus contains the fdsC and fdsD genes. Expression studies showed that RcFDH is only active when both FdsC and FdsD are present. Both proteins are proposed to be involved in bis-molybdopterin guanine dinucleotide modification and insertion into RcFDH.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Tobias Hartmann, Silke LeimkühlerORCiDGND
DOI:https://doi.org/10.1111/febs.12528
ISSN:1742-464X
ISSN:1742-4658
Title of parent work (English):The FEBS journal
Publisher:Wiley-Blackwell
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:FMN; FeS cluster; formate dehydrogenase; molybdenum cofactor (Moco)-binding chaperone; molybdoenzyme
Volume:280
Issue:23
Number of pages:14
First page:6083
Last Page:6096
Funding institution:Deutsche Forschungsgemeinschaft [LE1171/6-1]; Cluster of Excellence 'Unifying Concepts in Catalysis'
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.