• search hit 1 of 1
Back to Result List

The dynamics of Si cycling during weathering in two small catchments in the Black Forest (Germany) traced by Si isotopes

  • Silicon stable isotopes have emerged as a powerful proxy to investigate weathering because Si uptake from solution by secondary minerals or by the vegetation causes significant shifts in the isotope composition. In this study, we determined the Si isotope compositions of the principle Si pools within two small catchments located on sandstone and paragneiss, respectively, in the temperate Black Forest (Germany). At both settings, clay formation is dominated by mineral transformation preserving largely the signature of parental minerals with delta Si-30 values of around -0.7%. Bulk soils rich in primary minerals are similar to bulk parental material with delta Si-30 values close to -0.4%. Topsoils are partly different because organic matter degradation has promoted intense weathering leading to delta Si-30 values as low as -1.0%. Water samples expose highly dynamic weathering processes in the soil zone: 1) after spring snowmelt, increased release of DOC and high water fluxes trigger clay mineral dissolution which leads to delta Si-30Silicon stable isotopes have emerged as a powerful proxy to investigate weathering because Si uptake from solution by secondary minerals or by the vegetation causes significant shifts in the isotope composition. In this study, we determined the Si isotope compositions of the principle Si pools within two small catchments located on sandstone and paragneiss, respectively, in the temperate Black Forest (Germany). At both settings, clay formation is dominated by mineral transformation preserving largely the signature of parental minerals with delta Si-30 values of around -0.7%. Bulk soils rich in primary minerals are similar to bulk parental material with delta Si-30 values close to -0.4%. Topsoils are partly different because organic matter degradation has promoted intense weathering leading to delta Si-30 values as low as -1.0%. Water samples expose highly dynamic weathering processes in the soil zone: 1) after spring snowmelt, increased release of DOC and high water fluxes trigger clay mineral dissolution which leads to delta Si-30 values down to -0.7% and 2) in course of the summer, Si uptake by the vegetation and secondary mineral formation drives dissolved Si to typical positive delta Si-30 values up to 1.1%. Groundwater with delta Si-30 values of around 0.4% records steady processes in bedrock reflecting plagioclase weathering together with kaolinite precipitation. An isotope mass balance approach reveals incongruent weathering conditions where denudation of Si is largely driven by physical erosion. Erosion of phytoliths contributes 3 to 21% to the total Si export flux, which is in the same order as the dissolved Si flux. These results elucidate the Si dynamics during weathering on catchments underlain of sedimentary origin, prevailing on the Earth surface and provide therefore valuable information to interpret the isotope signature of large river systems.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Grit Steinhöfel, Jörn Breuer, Friedhelm von BlanckenburgORCiDGND, Ingo Horn, Michael SommerORCiDGND
DOI:https://doi.org/10.1016/j.chemgeo.2017.06.026
ISSN:0009-2541
ISSN:1878-5999
Title of parent work (English):Chemical geology : official journal of the European Association for Geochemistry
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Tag:Biogeochemical Si cycle; Sedimentary rocks; Silicon isotopes; UV femtosecond laser ablation; Weathering
Volume:466
Number of pages:14
First page:389
Last Page:402
Funding institution:Deutsche Forschungsgemeinschaft (DFG) [PAK 179, SO 302/3-1]; Deutsches GeoForschungsZentrum GFZ
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.